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The plan

1. Yesterday:

1.1 Basic properties of C*-algebras.

1.2 Classification: UHF and AF algebras.

1.3 Elliott’s program.

2. Today: Applying logic to 1.2–1.3.

2.1 Set theory: Abstract classification.
2.2 C*-algebras (review).
2.3 More set theory.

3. Saturday: Convincing you that 1.2–1.3 is logic.
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Basic definitions

A topological space X is Polish if it is separable and completely
metrizable.
A subset of X is analytic if it is a continuous image of a Borel set.
An equivalence relation E on X is analytic if it is an analytic
subset of X 2.

Thesis
Almost all classical classification problems deal with analytic
equivalence relations on Polish spaces.

“Proof”.
Objects are separable and the equivalence of A and B is witnessed
by another separable object F in a Borel fashion.
The set of such triples (A,B,H) is Borel, and its projection is
analytic.

The only classical-ish example for which this does not seem to work is homeomorphism relation of Polish spaces.
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Smoothness

Definition (Mackey)

An equivalence relation E on X is smooth if there is a
Borel-measurable f : X → R such that

x E y ⇔ f (x) = f (y).

Example

Similarity of n × n complex Hermitian matrices is smooth.
Associate to M the list of its eigenvalues (in the increasing order,
with multiplicities).
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A criterion for non-smoothness

Proposition

If G y X is a Polish group action on a Polish space such that all
orbits are dense and meager (i.e., of first category) then the orbit
equivalence relation EX

G is not smooth.

Proof.
If f : X → R is Borel, then we can find a dense Gδ subset Y of X
such that the restriction of f to Y is continuous. The set
{x ∈ X : g .x ∈ Y } is comeager for all g ∈ G . Therefore we can
find x ∈ X such that {g ∈ G : g .x ∈ Y } is comeager in G .
Therefore [x ] ∩ Y is dense. Then f is constant on [x ] and (by
continuity) on Y .

Example (Vitali equivalence relation)

On R let x ∼ y iff x − y ∈ Q. All orbits are countable and dense,
hence ∼ is not smooth.
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Borel reducibiity

Definition (H. Friedman, Kechris)

Assume E ,F are equivalence relations on Polish spaces X ,Y ,
respectively. Then E is Borel reducible to F , or E ≤B F , if there is
a Borel-measurable map f : X → Y such that

x E y ⇔ f (x) F f (y).

Interpretations:

1. Borel cardinality of X/E is ≤ than the Borel cardinality
of Y /F .

2. Classification problem for E is simpler than the classification
problem for F .

3. F -Equivalence classes are complete invariants for
E -equivalence classes.
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Glimm-Effros Dichotomy

Definition
On 2N, let x E0y if

(∃k)(∀n ≥ k)x(n) = y(n).

Theorem (Harrington–Kechris–Louveau, 1990)

If E is a Borel equivalence relation on a Polish space then either E
is smooth or E0 ≤B E .

This is false for analytic equivalence relations, since there is one
with exactly ℵ1 equivalence classes.
Combinatorics of the proof comes from Glimm’s theorem to the
effect that every non-type I C*-algebra has M2∞ as a subquotient.
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Whatever I say three times is true

Thesis
Almost all classical classification problems deal with analytic
equivalence relations on Polish spaces.

Thesis
In almost all cases, the space of invariants has a Polish topology
and the computation of invariants is given by a Borel-measurable
function.
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Example 1: Polish space of countable groups

Every countable group G is isomorphic to one of the form (N, ·G ),
and the latter is coded by

{(a, b, c) ∈ N3 : ab = c}

Therefore the space G of countable discrete groups is a Borel
subspace of the compact metric space P(N3).

The isomorphism ∼=G is an analytic equivalence relation, because
(by S∞ we denote the Polish group of all permutations of N)

{(G ,H, f ) ∈ G2 × S∞, f : G → H is an isomorphism}

is Borel.
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Example 1a: Polish space of countable models

A construction analogous to G gives a Borel space of all countable
models in a fixed countable language.

Models of a fixed first-order theory form a Borel set.
The isomorphism relation is an S∞-orbit equivalence relation.
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Classification by countable structures

An equivalence relation (X ,E ) is classified by countable structures
if there is a countable language L and a Borel map f from X into
the space of countable L-models such that

x E y iff f (x) ∼= f (y).

Proposition

An analytic equivalence relation E is classified by countable
structures iff it is ≤B to an S∞-orbit equivalence relation.

But what if we are classifying structures that are merely
separable instead of countable?
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Hyperspaces

Assume (K , d) is a compact metric space. The space F (K ) of all
compact subsets of K equipped with the Hausdorff metric

d(F ,G ) = inf{ε : F ⊆ε G and G ⊆ε F}

(with F ⊆ε G iff (∀a ∈ F )(∃b ∈ G )d(a, b) ≤ ε) is also compact.

Since every compact metric space is homeomorphic to a subspace
of [0, 1]N, F ([0, 1]N) is the compact metric space of all compact
metric spaces.
This does not work for non-compact Polish spaces X , since the
Hausdorff metric is not separable on F (X ).
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Effros Borel space

For a Polish space X let F (X ) be the space of closed subsets of X .
Consider σ-algebra Σ on F (X ) generated by sets

{A ∈ F (X )|A ∩ U 6= ∅}

where U ranges over open subsets of X .

Theorem (Effros)

(F (X ),Σ) is a standard Borel space (i.e., Σ is the σ-algebra of
Borel sets for some Polish topology on X ).

Example

Every separable Banach space is isometric to a closed subspace of
C ([0, 1]). Therefore

{X ∈ F (C ([0, 1])) : X is a closed subspace}

is ‘the standard Borel space of all separable Banach spaces.’
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Urysohn space, U

This is a separable complete metric space which is universal for
separable metric spaces and satisfies the following extension
property:
for all finite metric X ⊆ Y , every isometry f : X → U extends to
an isometry g : Y → U.

X U

Y

f

⊆
g

Theorem (Clemens, Gao–Kechris, 2000)

Translation action of the isometry group Iso(U) on F (U) is the
maximal orbit equivalence relation of a Polish group action.
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C*-algebras review

1. Concrete C*-algebra is a norm-closed algebra of operators on
a complex Hilbert space.

2. (Gelfand–Naimark–Segal, GNS) Abstract C*-algebra is a
Banach algebra with involution ∗ that satisfies ‖a‖2 = ‖aa∗‖
for all a.

3. (Gelfand–Naimark) Compact metric spaces are complete
isomorphism invariants for separable unital abelian
C*-algebras.

4. UHF algebras are direct limits of full matrix algebras, Mn(C).

5. (Glimm, 1960) Generalized integer is a complete isomorphism
invariant for unital UHF algebras.

6. AF algebras are direct limits of finite-dimensional C*-algebras.

7. (Elliott, 1974) Pre-ordered abelian group K0 is a complete
isomorphism invariant for AF algebras.

8. In (3), (5), and (7) we even have equivalence of categories.
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A nonseparable digression

Theorem (F.–Katsura, 2011)

For any uncountable cardinal κ there are 2κ nonisomorphic unital
UHF algebras of character density κ with the same K0.

Also, there are unital LM algebras of character density ℵ2 that are
not UHF.

However, this is a completely different story. All other C*-algebras
in my talks will be separable, unital, simple and nuclear.

(This is not going to be on the exam.)
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Standard Borel space of C*-algebras, I

Lemma
Every separable C*-algebra is isomorphic to a subalgebra of B(H),
for the separable, infinite-dimensional complex Hilbert space H.

A silly proof.

GNS followed by Löwenheim–Skolem.

However, B(H) is not norm-separable, hence the space of its
norm-closed subalgebras is not standard Borel.

Theorem (Junge–Pisier, 1995)

There is no universal separable C*-algebra.
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Standard Borel space of C*-algebras, II

Definition (Kechris, 1995)

Endow B(H) with the Borel structure of the strong operator
topology. Then Γ = B(H)N is a standard Borel space.
Every γ ∈ Γ ‘codes’ the C*-algebra C ∗(γ) generated by it.

Proposition

The following subsets of Γ are Borel.

1. (easy) {γ|C ∗(γ) is unital},
2. (Effros) {γ|C ∗(γ) is nuclear},
3. (F.–Toms–Törnquist) {γ|C ∗(γ) is simple}.
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Review: Elliott’s program

Conjecture (Elliott, 1990’s)

All nuclear,1 separable, simple, unital, infinite-dimensional
C*-algebras are classified by the K-theoretic invariant,

Ell(A) : ((K0(A),K0(A)+, 1),K1(A),T (A), ρA).

The conjecture is false, but it has led to some spectacular
mathematics and many instances od its revised version have been
confirmed.

1I shall define nuclear C*-algebras tomorrow. All algebras mentioned today
(except B(H)) are nuclear.
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Everything is Borel

Theorem (F.–Toms–Törnquist, 2011)

There is a standard Borel spaces Ell of Elliott invariants, and the
computation of Ell is given by a Borel map.

Separable C*-algebras Γ Ell Elliott invariants
Φ

Corollary

The isomorphism relation of unital UHF algebras is smooth.
The isomorphism relation of AF algebras is classifiable by
countable structures.

Proof.
Combine the above with Glimm’s and Elliott’s theorems.
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Hjorth’s turbulence

An action G y X is turbulent if

1. all orbits are dense

2. all orbits are meager

3. ∀x ∈ X , ∀U ∈ O(e), ∀V ∈ O(x) the graph on U defined by

{z , y} ∈ E ⇔ (∃g ∈ U)g .z = y

is such that the closure of the connected component of x
intersects every orbit.

Example

The action of c0 = {(xn) ∈ RN : limn |xn| = 0} on RN by
translation.

Theorem (Hjorth, 1997)

If G y X is turbulent then the orbit equivalence relation EX
G is not

classified by countable structures.
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Compact metrizable spaces I

Proposition (Folklore?)

Homeomorphism relation of closed subsets of [0, 1] is classifiable
by countable structures.

Proof.
If K ⊆ [0, 1] is compact then it has only two types of connected
components: singleton and interval. Use the ‘tagged’ version of
Cantor–Bendixson analysis.

Corollary (trust me)

The isomorphism relation of unital abelian C*-algebras generated
by a single self-adjoint element is classifiable by countable
structures.
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Compact metrizable spaces II

Proposition (F.–Toms–Törnquist, after Hjorth)

Homeomorphism relation of closed subsets of [0, 1]2 is not
classifiable by countable structures.

Corollary

The isomorphism relation of singly-generated unital abelian
C*-algebras is not classifiable by countable structures.

Question
Does the complexity of the isomorphism relation for unital abelian
separable C*-algebras increase if the number of generators
increases?
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AI algebras are not classifiable by countable structures

. . . although they are classifiable by Elliott’s invariant

AI algebras are direct limits of C ([0, 1],Mn(C)) for n ∈ N.

Using a Borel version of a result of Thomsen and Elliott’s
classification result for AI algebras, we obtained the following:

Theorem (F.–Toms–Törnquist, 2011)

We have the following Borel-reductions

graph
isomorphism

compact
metric
spaces

simple
unital
AI algebras

Elliott’s
invariants

countable
structures

unital
abelian
C*-algebras

/
? ?
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The dark side

On [0, 1]N define

x E1y if and only if (∀∞n)x(n) = y(n)

Theorem (Kechris–Louveau, 1997)

If E1 ≤B E then E is not Borel-reducible to any orbit equivalence
relation of a Polish group action.

Theorem (Ferenczi–Louveau–Rosendal, 2009)

Isomorphism of separable Banach spaces is the ≤B -maximal
analytic equivalence relation.
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Together with an another result of F.–Toms–Törnquist, this gives

E0 E1 EKσ

biembeddability
of AF
algebras

isomorphism
of Banach
spaces

?
?

Theorem (folklore)

Isomorphism of von Neumann factors with separable predual is
below an orbit equivalence relation.

Therefore classifying von Neumann factors is easier than classifying
Banach spaces (up to the isomorphism).2

2Of course this statement has to be taken with a grain of salt. In this
context classifying finite simple groups is strictly easier than comparing real
numbers.
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Theorem (F.–Toms–Törnquist, 2011)

The isomorphism relations in the following categories are below an
orbit equivalence relation.

1. Separable, simple, nuclear, unital C*-algebras.

2. Elliott invariants.

Proof of (1) uses a Borel version of a very difficult result of
Kirchberg and does not appear to be amenable to generalizations.
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Polish groupoids

Partially following A. Ramsay, we say that a structure (O,A)
(objects and arrows) is a Polish groupoid if

1. It is a groupoid,

2. Both O and A carry a Polish topology,

3. Operations s : A → O and r : A → O (‘source’ and ‘range’)
are continuous,

4. Composition is continuous on the set {(f , g) ∈ A2|f ◦ g ∈ A}.

On O define x E(O,A)y iff

(∃f ∈ A)(s(f ) = x and r(f ) = y).

Proposition (Coskey–Elliott–F.–Lupini, 2012)

E1 6≤B E(O,A) for any Polish groupoid.
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However. . .

Question
If A is a separable C*-algebra, does the groupoid whose objects are
subalgebras of A and arrows are *-isomorphisms between them
carry a Polish groupoid structure?

Question
Is every E(A,O) Borel-reducible to an orbit equivalence relation of a
Polish group action?

At least I know the answer to the following question:

Question
Is the isomorphism of separable (simple) C*-algebras below an
orbit equivalence relation?

We will find this out tomorrow.
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Borel reductions diagram, sideways


