
Happy Bastille Day!



Happy Bastille Day!



Elliott’s program and descriptive set theory III

Ilijas Farah
(joint work with Bradd Hart and David Sherman

and with

George Elliott, Vern Paulsen, Christian Rosendal, Andrew Toms and Asger Törnquist)
LC 2012, Manchester, July 14

As logicians, we do our subject a disservice by convincing
others that logic is first order, and then convincing them
that almost none of the concepts of modern mathematics
can really be captured in first order logic. (Jon Barwise)



Elliott’s program and descriptive set theory III

Ilijas Farah
(joint work with Bradd Hart and David Sherman

and with
George Elliott, Vern Paulsen, Christian Rosendal, Andrew Toms and Asger Törnquist)

LC 2012, Manchester, July 14

As logicians, we do our subject a disservice by convincing
others that logic is first order, and then convincing them
that almost none of the concepts of modern mathematics
can really be captured in first order logic. (Jon Barwise)



model theory
Elliott’s program and descriptive set theory III

Ilijas Farah
(joint work with Bradd Hart and David Sherman

and with
George Elliott, Vern Paulsen, Christian Rosendal, Andrew Toms and Asger Törnquist)

LC 2012, Manchester, July 14

As logicians, we do our subject a disservice by convincing
others that logic is first order, and then convincing them
that almost none of the concepts of modern mathematics
can really be captured in first order logic. (Jon Barwise)



model theory
Elliott’s program and descriptive set theory III

Ilijas Farah
(joint work with Bradd Hart and David Sherman

and with
George Elliott, Vern Paulsen, Christian Rosendal, Andrew Toms and Asger Törnquist)

LC 2012, Manchester, July 14

As logicians, we do our subject a disservice by convincing
others that logic is first order, and then convincing them
that almost none of the concepts of modern mathematics
can really be captured in first order logic. (Jon Barwise)



The plan

1. Thursday:

1.1 Basic properties of C*-algebras.

1.2 Classification: UHF and AF algebras.

1.3 Elliott’s program.

2. Yesterday: Applying logic to 1.2–1.3.

2.1 Set theory.
2.2 C*-algebras (review).
2.3 More set theory.

3. Today: Convincing you that 1.2–1.3 is logic.

3.1 Review.
3.2 Logic of metric structures.
3.3 A proof from the book.
3.4 It is all logic.
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Review I: C*-algebras

C*-algebras are norm-closed subalgebras of B(H), the algebra of
bounded linear operators on a complex Hilbert space H.

Separable unital algebras that are direct limits of finite-dimensional
C*-algebras (UHF and AF algebras) were classified by Glimm and
Elliott.
Elliott’s program: Classify separable, unital, simple, nuclear
C*-algebra by K-theoretic invariants.
Are there set-theoretic obstructions to this?
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Review II: Borel reductions
E ≤B F iff there exists a Borel function f such that

x E y iff f (x) F f (y).
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Review II: Set theory
By results of F.–Toms–Törnquist, Ferenczi–Louveau–Rosendal and
Melleray:

graph
isomorphism

Separable
unital
simple
nuclear
C*-algebras

Maximal
orbit
equivalence
relation

von Neumann
factors

Isomorphism
of Banach
spaces

isometry
of Banach
spaces

/
?

/

Question
Is the isomorphism of separable C*-algebras ≤B an orbit
equivalence relation of a Polish group action?
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Review: Urysohn space, U

It is a separable complete metric space which is universal for
separable metric spaces and such that for all finite metric X ⊆ Y ,
every isometry f : X → U extends to an isometry g : Y → U.

X U

Y

f

⊆
g

Theorem (Clemens–Gao–Kechris, 2000)

The orbit equivalence relation of Iso(U) y F (U) is the
≤B -maximal among orbit equivalence relations of Polish group
actions.



Review: Urysohn space, U

It is a separable complete metric space which is universal for
separable metric spaces and such that for all finite metric X ⊆ Y ,
every isometry f : X → U extends to an isometry g : Y → U.

X U

Y

f

⊆
g

Theorem (Clemens–Gao–Kechris, 2000)

The orbit equivalence relation of Iso(U) y F (U) is the
≤B -maximal among orbit equivalence relations of Polish group
actions.



Logic of metric structures

Developed by C.W. Henson, I. Ben Ya’acov, A. Berenstein, and A.
Usvyatsov.

I shall describe only the ‘logic of C*-algebras’ as modified1 by
F.–Hart–Sherman.

1several times
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Logic of C*-algebras: Syntax

Language: {+, ·, ∗}.

Terms (s, t, . . . ):

noncommutative *-polynomials.

Atomic formulas (ϕ, ψ, . . . ):

‖t‖ for a term t.

Formulas (ϕ, ψ, . . . ):

The smallest set F that satisfies

1. all atomic formulas are in F,

2. if g : Rn 7→ R is uniformly continuous and ϕ1, . . . , ϕn are in F
then

g(ϕ1, . . . , ϕn)

is in F,

3. sup‖xi‖≤1 ϕ and inf‖xi‖≤1 ϕ are in F whenever ϕ is in F.
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Logic of C*-algebras: Semantics
If A is a normed metric structure with operations +, ·, ∗ that are
uniformly continuous on bounded sets and ϕ(x) is a formula then

ϕ(x)A

is interpreted in the natural way.
Its interpretation is a function into R that is uniformly continuous
on bounded sets.

Example

Fix C*-algebra A.

1. If ϕP(x) is ‖x2 − x‖+ ‖x − x∗‖ then the zero-set of ϕP

{a ∈ A|ϕP(a)A = 0}

is the set of projections in A.

2. If
ψMvN(x , y) = ϕP(x)+ϕP(y)+inf‖z‖≤1(‖x−zz∗‖+‖y−z∗z‖),
then the zero set of ψMvN is {(p, q) : p ∼ q}.
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Theory of a C*-algebra A, Th(A)

A theory of a C*-algebra A is the set

{ϕ : ϕA = 0}.

Alternatively, one could define the theory of A as the map from the
set of all sentences into R+:

ϕ 7→ ϕA.

With any natural Borel space of models and Borel space of
formulas, one has the following

Lemma
The map A 7→ Th(A) is Borel.
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A short intermission

Your theorem is not as good as you think when you prove
it

and it is not as bad as you think five days later.

(Gert K. Pedersen)

He [G.K. Pedersen] was obsessed with being witty.
(Anonymous)
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Borel space of separable (complete) models

Fix a language L = {f1, f2, . . . } in the logic of metric structures
and a L-theory T .

Let
X = (X , d ,F X

1 ,F
X
2 , . . . )

be a model of T , where (X , d) is separable, complete metric space
and F X

j ⊆ X k(j) is a closed set corresponding to the graph of the
interpretation of fj .
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Borel space of separable (complete) models II

By a result of Katětov, X can be extended to a complete, separable
metric space X + isometric to U. Moreover, any isometry between
X and Y can be extended to an isometry between X + and Y +.

Identify X + with U to get

X+ = (U,X , d ,F X
1 ,F

X
2 , . . . ).

The space of such X+ carries a standard Borel structure, and the
action of Iso(U) by translations is Borel.
Also

(X ,F X
1 , . . . )

∼= (Y ,F Y
1 , . . . )

iff X and Y are in the same Iso(U)-orbit.
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¨̂

, -

Theorem (Elliott–F.–Paulsen–Rosendal–Toms–Törnquist)

Assume L is a countable language in the logic of metric structures,
and T is a L-theory. Then the isomorphism of separable
(complete) models of T is ≤B an orbit equivalence relation of an
action of Iso(U), the isometry group of Urysohn’s space.

Corollary (Elliott–F.–Paulsen–Rosendal–Toms–Törnquist)

The isomorphism relation of separable C*-algebras is ≤B an orbit
equivalence relation of a Polish group action.
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separable
metric
models

Actions of Iso(U)

Problem
Develop a method for distinguishing orbit equivalence relations of
turbulent actions of different Polish groups.
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The definition of nuclear C*-algebras, finally

There are several equivalent ways to define nuclear algebras. I will
use one that is most convenient for my purposes.

It will take some time to define it.
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Positivity

An element a of a C*-algebra is positive if a = b∗b for some b.

A linear map Φ: A→ B is positive if it sends positive elemets to
positive elements.
It is completely positive if

Mn(A) 3 (aij)i ,j≤n 7→ (Φ(aij))i ,j≤n ∈ Mn(B)

is positive for all n.

Example

1. Every *-homomorphism is completely positive.

2. The transpose map on M2(C)(
a11 a12

a21 a22

)
7→
(

a11 a21

a12 a22

)
is positive but not completely positive.
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Positivity II

Proposition

If Φ: A→ B is a *-homomorphism and p ∈ B is a projection, then

a 7→ pΦ(a)p

is completely positive.

ucp:= unital completely positive

ucp maps ϕ : A→ C (aka states) play a key role in the GNS
theorem.
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Completely Positive Approximation Property (CPAP)

Definition
A unital C*-algebra A is nuclear if there are n(j) ∈ N and ucp
maps ϕj and ψj for j ∈ N

A A

Mn(k)(C)ϕj ψj

such that ψj ◦ ϕj converges to idA pointwise.

Lemma

1. Each Mn(C) is nuclear.

2. Direct limits of nuclear algebras are nuclear.

3. UHF ⇒ AF ⇒ nuclear.

4. abelian ⇒ nuclear.

5. A nuclear, X cpct Hausdroff ⇒ C (X ,A) nuclear.

Please bear with me - I’ll put nuclear algebras on hold for a couple
of slides.
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Ultrapowers

According to David Sherman, functional analysts discovered
ultrapowers before us.
F. B. Wright, A reduction for algebras of finite type, Ann. of
Math. (2) 60 (1954), 560–570.
K.  Los, Quelques remarques, théorèmes et problèmes sur les classes
d’efinissables d’algèbres, Mathematical interpretation of formal
systems, pp. 98–113. North-Holland Publishing Co., Amsterdam,
(1955).



Ultrapowers II

If A is a C*-algebra and U is an ultrafilter on N then let

L∞(A) = {(an) ∈ AN| sup
n
‖an‖ <∞}

and
c0(U) = {(an) ∈ L∞(A) : lim

n→U
‖an‖ = 0}.

The ultrapower of A is∏
U

A = L∞(A)/c0(U),

usually denoted AU by operator algebraists.
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Here is a sample of what I originally planned to talk about

In the following identify B with its diagonal copy in
∏
U B.

Exercise
Assume A is a subalgebra of a separable algebra B, U is an
ultrafilter on N, and the ultrapower

∏
U B has automorphisms Φn

for n ∈ N such that (identifying A and B with their diagonal copies
in the ultrapower)

1. Φn fixes all elements of A,

2. limn→∞ dist(Φn(b),
∏
U A) = 0 for all b ∈ B.

Then A ∼= B.

This is used e.g., to characterize C*-algebras A such that
A⊗Z ∼= A (Z is the notorious Jiang–Su algebra).
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Some unnerving facts

Theorem (Junge–Pisier, 1995)

There is a finite set F ⊆ B(H) such that any C*-algebra A such
that F ⊆ A ⊆ B(H) is not nuclear.

Nuclear algebras form a ‘nonstationary set!’

Lemma
An ultrapower of a UHF algebra is not nuclear.

Nuclear algebras are not axiomatizable!
(And the same applies to UHF, AF, AI, AT, AH,. . . ).
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UHF algebras revisited

Lemma
A separable C*-algebra is UHF if and only if it is LM (locally
matricial), i.e., if
Every finite F ⊆ A is ε-included in some full matrix subalgebra of
A, for every ε > 0.

Proposition

For every ε > 0 and n ∈ N there exists a type tε(x0, . . . , xn−1) in
the theory of C*-algebras over ∅ such that in every C*-algebra A,
type tε is realized by a0, a1, . . . , an−1 iff no full matrix subalgebra
ε-includes {a0, . . . , an−1}.
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Glimm revisited

Corollary

There is a sequence of types t1/k for k ∈ N such that a C*-algebra
A is UHF iff it omits all of those types.

Proofs of both the above and the following use a bit of what I
called ‘stability’ in my first talk.

Theorem (Glimm, 1960)

Separable unital C*-algebras that omit all t1/k are isomorphic iff
they are elementarily equivalent.

(Not surprisingly, this fails in the nonseparable case by F.–Katsura.)
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Revisiting AF

. . . but not Elliott

Proposition

There is a sequence of types s1/k for k ∈ N such that a C*-algebra
A is AF iff it omits all of those types.

Proposition

There are separable, unital AF algebras that are elementariy
equivalent but nonisomorphic.

Proof.
Let S be the set of all sentences in the language of C*-algebras.

separable
unital
AF algebras

F (S)

K0 groups
of AF algebras
(dimension groups)

A 7→ Th(A)

/
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K-theory is good

Problem
Is there a model-theoretic interpretation of Elliott’s theorem?

All known obstructions to ℵ1-saturation of the Calkin algebra and
other corona algebras are of K-theoretic nature. (F.–B. Hart–N. C.
Phillps).

Question
Is K-theory the only obstruction to ℵ1-saturation of the Calkin
algebra?
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What about the nuclearity?

Definition
A unital C*-algebra A is nuclear if there are n(j) ∈ N and ucp
maps ϕj and ψj for j ∈ N

A A

Mn(k)(C)
ϕj ψj

such that ϕj ◦ ψj converges to idA pointwise.

Conjecture

There is a sequence of types such that the nuclear algebras are
exactly the C*-algebras omitting those types.

Thesis
We have only scratched the surface.
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