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The Gromov-

Ty Theorem (Gel’fand-Naimark duality)

Propinquity

The category of C*-algebras, with *-morphisms as arrows, is a
concrete realization of the dual category of locally compact spaces,
with proper continuous maps as arrows.

Motivation

Noncommutative metric geometry aims at providing a
foundation for constructions of approximations in quantum
physics based upon quantum spaces, and provides a new
approach to developing a geometry for quantum spaces
from the metric geometry of their state spaces. The key tools
are metrics on classes of quantum metric spaces.
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What should a quantum locally compact metric
space be?

Founding Allegory of Noncommutative Metric Geometry

Noncommutative metric geometry is the study of
noncommutative generalizations of algebras of Lipschitz
functions on metric spaces.

First Problem of Noncommutative Metric Geometry

What should a noncommutative analogue of a Lipschitz
algebra be? For a locally compact metric space, Gel'fand
duality suggests that a noncommutative Lipschitz algebra
be based on a C*-algebra. What extra structure does the
metric provide?

We begin with the classical picture as a guide.
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S A natural dual object to a metric is the Lipschitz seminorm:

Definition
Let (X, m) be a metric space. For any functionf : X — R,
define:

L(f) :sup{wx)_ﬂy)| :x,yeX,x;éy}.

Questions

O Can we recover the metric from its Lipschitz
seminorm?

@ What makes a Lipschitz seminorm special among all
seminorms?
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USe  The self-adjoint part of a C*-algebra 2 is denoted by sa (2)

L while its state space is denoted by .(21) and the smallest
; unital C*-algebra containing 2l is denoted by u&l.

Definition
A Lipschitz pair (,L) is a C*-algebra 2 and a densely

defined seminorm L on sa (u2l) such that
{a €sa(uA):L(a) =0} = Rly.

Definition (Kantorovich (1940), Kantorovich-Rubinstein (1958),
Wasserstein (1969), Dobrushin (1970), Connes (1989), Rieffel
(1998))

The Monge-Kantorovich metric mk_ on . () associated with
a Lipschitz pair (2, L) is defined for all ¢, € . () by:

mikw (@, 9) = sup {lg(a) — (a)] : a € sa (), L(a) < 1}
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state space of C(X) (i.e. the Gel'fand spectrum of C(X)). Let L be

the Lipschitz seminorm for m. Then:

Vx,y € X m(x,y) = mk(x,y).
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The Gromov-
Hausdorff
Propinquity Theorem
Let (X, m) be a compact metric space and identify X with the pure
state space of C(X) (i.e. the Gel'fand spectrum of C(X)). Let L be

the Lipschitz seminorm for m. Then:

Vx,y € X m(x,y) = mk(x,y).

The Monge-Kantorovich metric is well-behaved when
working over compact metric spaces:

Theorem (Wasserstein, Dobrushin (1970))

Let (X, m) be a compact metric space. The Monge-Kantorovich
metric mky_ associated with m is a metric which metrizes the
weak* topology on the state space ¥ (C(X)) of C(X).
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Definition (Rieffel, 1998)

A compact quantum metric space (2, L) consists of an
order-unit space 2 and a seminorm L densely defined on £,
satisfying:

{aeA:L(a) =0} =Rly,

and such that the distance:
mk. : @, P € L (A) — sup{|pa) —¢(a)| :a € A L(a) <1}

metrizes the weak* topology on the state space .7 (2(). The
seminorm L is then called a Lip-norm.
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Compact Quantum Metric Spaces

Based on this observation, Rieffel introduced:
Definition (Rieffel, 1998)

A compact quantum metric space (2,L) consists of an
order-unit space 2 and a seminorm L densely defined on £,
satisfying:

{aeA:L(a) =0} =Rly,

and such that the distance:
mk : @, P € L (A) — sup{|p(a) —p(a)| :a € A L(a) <1}

metrizes the weak* topology on the state space . (2(). The
seminorm L is then called a Lip-norm.

We shall call a quantum compact metric space a unital
Lipschitz pair (2, L) such that (sa (2),L) is a compact
aguantum metric space.
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Characterization of Compact Quantum Metric
Spaces

The key observation of Rieffel is that one may characterize
compact quantum metric spaces in C*-algebraic terms:
Theorem (Rieffel, 1998)

A unital Lipschitz pair (2, L) with A unital is a compact
quantum metric space if and only if:

Q r = diam (. (), mk.) < oo,
O {acsa(A):L(a) <1,|a|a < r}is precompact in norm.
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The key observation of Rieffel is that one may characterize
compact quantum metric spaces in C*-algebraic terms:
Theorem (Rieffel, 1998)

A unital Lipschitz pair (2, L) with A unital is a compact
quantum metric space if and only if:

Q r = diam (. (), mk.) < oo,
@ {acsa(A):L(a) <1,lal|la < r}is precompact in norm.

Proof.

Use Kadison functional representation and Arzéla-Ascoli
theorems.
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Examples: Ergodic Actions of Compact Groups
with continuous Lengths

For any C*-algebra 2, let sa () be its self-adjoint part and
|| - |la be its norm.
Theorem (Rieffel, 1998)

Let « be a strongly continuous action of a compact group G on a
unital C*-algebra A and ¢ be a continuous length function on G.
Let e € G be the unit of G. For all a € 2, define:

g (@) — alla

L(a):sup{f(g):geG\{e}}.

If{facA:VgeG wag(a) =a} = Cly, then (sa(A),L)isa
compact quantum metric space.

This result uses the fact that spectral subspaces for such
actions are finite dimensional (Hoegh-Krohn, Landstad,
Stormer, 1981).
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Convergence of Compact Metric Spaces

Definition

Let (X, mx) and (Y, my) be two compact metric spaces. A
distance m on X[ 1Y is admissible for (mx, my) when the
canonical injections (X, mx) < (XI]Y,m) and

(Y, my) < (XIIY,m) are isometries.
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Convergence of Compact Metric Spaces

Definition

Let (X, mx) and (Y, my) be two compact metric spaces. A
distance m on X[ 1Y is admissible for (mx, my) when the
canonical injections (X, mx) < (XI]Y,m) and

(Y, my) < (XIIY,m) are isometries.

Notation

The Hausdorff distance on the compact subsets of a metric space
(X, m) is denoted by Hausp,.

Definition (Gromov, 1981)

The Gromov-Hausdorff distance between two compact metric
spaces (X, mx) and (Y, my) is the infimum of the set:

{Hausn(X,Y) : mis admissible for (mx, my)} .
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McShane’s Theorem

LSeea  How to formulate “isometric embeddings” in the

e noncommutative world?

Theorem (McShane, 1934)

Let (Z, m) be a metric space and X C Z. If f : X — R has
Lipschitz constant 1, then there exists g : Z — R with Lipschitz
constant | and whose restriction to X is f.

Fr

Thus, the Lipschitz seminorm on C(X — R) is the quotient
of the Lipschitz seminorm on C(Z — R). More generally, a
map ¢ : X — Z between two compact metric spaces is an
isometry if and only:

Lx(f) = inf{lLz(g) : g € C(Z > R),go1=f}

forall f € C(X — R). This result requires that we work
with R-valued Lipschitz functions.




The quantum Gromov-Hausdorff distance

The Gromov-

[LA[mt.sdﬂrﬁ. Deﬁnition (RiEf_fEZ/ 2000)

Let (23,L1) and (25, L) be two compact quantum metric
spaces. A Lip-norm L on 20y & 2, is admissible for (L1, L)
when, for all {j,k} = {1,2} and a4; € sa (2):

Li(a) = inf{L(ay,a2) : ax € sa (Ax)}.
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The quantum Gromov-Hausdorff distance

Definition (Rieffel, 2000)

Let (23,L1) and (25, L) be two compact quantum metric
spaces. A Lip-norm L on 20y & 2, is admissible for (L1, L)
when, for all {j,k} = {1,2} and a4; € sa (2):

Li(a) = inf{L(ay,a2) : ax € sa (Ax)}.

Proposition (Rieffel, 1999)

If L is an admissible Lip-norm for (Lg(, Ly ) then the canonical
injections (7 (2A), mky, ) — (L (A S B), mky) is an isometry
(and similarly with (B, Ly)).
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The quantum Gromov-Hausdorff distance

Definition (Rieffel, 2000)

Let (23,L1) and (25, L) be two compact quantum metric
spaces. A Lip-norm L on 20y & 2, is admissible for (L1, L)
when, for all {j,k} = {1,2} and a4; € sa (2):

Li(a) = inf{L(ay,a2) : ax € sa (Ax)}.

Definition (Rieffel, 2000)

The quantum Gromov-Hausdorff distance
dist,; ((2, Ly ), (B, L)) between two compact quantum
metric spaces (2, Ly) and (B, Ly) is the infimum of the set:

{Hausmi (-7 (), Z(B)) : L is admissible for (Ly, Ly)} .

v
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For any three quantum compact metric spaces (2, Ly ), (B, Ly)
and (D, Ly ), we have:
O diam (.7 (), mk, ) + diam ((B), mki,, ) >
dist, (2, La), (B, L)) = dist, (B, L), (2, La)) > 0,
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For any three quantum compact metric spaces (2, Ly ), (B, Ly)
and (D, Ly ), we have:

O diam (.7 (), mk, ) + diam ((B), mki,, ) >

dist, (2, La), (B, L)) = dist, ((B, L), (2, Ly)) = 0,
@ dist, (2, La), (D,Lo)) <
disty (2, L), (B, L)) + disty (B, Ls), (D, Lo)),

@ dist, is complete,

@ dist, is dominated by the Gromov-Hausdorff distance in the
classical case,
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The Gr - o
Hansdorff Theorem (Rieffel, 2000)
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For any three quantum compact metric spaces (2, Ly ), (B, Ly)
and (D, Ly ), we have:

O diam (.7 (), mk, ) + diam ((B), mki,, ) >

dist, (2, La), (B, L)) = dist, ((B, L), (2, Ly)) = 0,
@ dist, (2, La), (D,Lo)) <
disty (2, L), (B, L)) + disty (B, Ls), (D, Lo)),

@ dist, is complete,

@ dist, is dominated by the Gromov-Hausdorff distance in the
classical case,

@ dist, ((A, L), (B, L)) = 0 iff there exists a
order-unit-space isomorphism from sa () to sa (B) whose
dual map is an isometry from (. (B), mky,, ) to
(7 (), mk'—m)'
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O Replace the state space by 2 x 2-matrix-valued
completely positive unital maps: Kerr's matricial
Gromov-Hausdorff distance

@ Replace the state space by the graph of the
multiplication restricted to the unit Lip-ball: Li’s
C*-algebraic distance

© Work entirely within the C*-algebra category.

o Li’s nuclear distance based on Lip-balls,

o FL approach based on Leibniz Lip-norms:
@ FL’s quantum propinquity based on Lip-balls.
@ FL's dual propinquity based on state space.




The Distance Zero Problem

The Gromov-

Hausdorff How to get *-isomorphism as necessary for distance zero?

Propinquity

O Replace the state space by 2 x 2-matrix-valued
completely positive unital maps: Kerr's matricial
Gromov-Hausdorff distance

@ Replace the state space by the graph of the
multiplication restricted to the unit Lip-ball: Li’s
C*-algebraic distance

© Work entirely within the C*-algebra category.

o Li’s nuclear distance based on Lip-balls,
e FL approach based on Leibniz Lip-norms:
@ FL’s quantum propinquity based on Lip-balls.
@ FL's dual propinquity based on state space.
Thus, our new approach focuses on keeping the noncommutative
Monge-Kantorovich metric and shift the focus to the relationship
between Lip-norms and multiplicative structure.




The Leibniz inequality

LGPl The main problem of dist, is that it does not involve the

Propinquity multiplication at all, and in fact, neither does the definition
' of compact quantum metric spaces.




The Leibniz inequality

{500 The main problem of dist, is that it does not involve the

Propinquity multiplication at all, and in fact, neither does the definition
‘ of compact quantum metric spaces. Yet, most important

examples of quantum locally compact metric space have a

very important additional property:
Definition
A seminorm L on a C*-algebra 2 has the Leibniz property

when:

Va,b € A L(ab) < [laf|al () + L(a)||b]la




The Gromov-
Hausdorff
Propinquity

The Leibniz inequality

The main problem of dist; is that it does not involve the
multiplication at all, and in fact, neither does the definition
of compact quantum metric spaces. Yet, most important
examples of quantum locally compact metric space have a
very important additional property:

Definition
A seminorm L on a C*-algebra 2 has the Leibniz property
when:

Va,b € A L(ab) < ||a||aL(b) + L(a)]|b||2-

In most cases, the Lip-norms of quantum locally compact
metric space comes from derivations, spectral triples or
similar constructions which gives the Leibniz property. This
is a natural connection between metric and multiplicative
structures of quantum locally compact metric space.
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recent work on convergence of vector bundles. It
appears that one should work within the framework of
C*-metric spaces, where Lip-norms are defined on
C*-algebras and satisfy a strong form of the Leibniz
property (cf Rieffel’s work on convergence of matrix
algebras to spheres, for instance).
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general. This means that if one asks for admissible
Lip-norms to be Leibniz in the definition of dist;, one
only gets a pseudo-semi-metric (Rieffel’s proximity).




The role of the Leibniz inequality

The Gromov-

Hausdorff @ The Leibniz inequality plays a central role in Rieffel’s
Propinquity

recent work on convergence of vector bundles. It
appears that one should work within the framework of
C*-metric spaces, where Lip-norms are defined on
C*-algebras and satisfy a strong form of the Leibniz
property (cf Rieffel’s work on convergence of matrix
algebras to spheres, for instance).

@ Yet, the quotient of a Leibniz seminorm is not Leibniz in
general. This means that if one asks for admissible
Lip-norms to be Leibniz in the definition of dist;, one
only gets a pseudo-semi-metric (Rieffel’s proximity).

Hard Problem

How does one define a non-trivial metric on *-isomorphic,
quantum isometric classes of C*-metric spaces?
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Leibniz quantum compact metric spaces

The Gromov- . .
ety We first choose a category of quantum compact metric
Propinquity

spaces.
For a, b elements of a C*-algebra 2, letaob = @ be the

Jordan product of a,b and {a,b} = % be the Lie product
ofa,b.

Definition (Latrémoliére, 2013)

A quantum compact metric space (2, L) is a Leibniz quantum
compact metric space when, for all a,b € sa () we have:

L(aob) < [laflaL(b) 4 L(a)|[b]la

and
L ({a,b}) < [lallaL(b) + L(a)[[]la,

while L is lower semi-continuous.




Bridges and Tunnels

The Gromov- . . . . .
Hausdorf We propose the following notion of a pair of isometric
Propinquity

embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémoliere, 2013)

Let (24, L1) and (23, Ly) be two Leibniz quantum compact
metric spaces. A tunnel (D,Lg, 711, 712) is a Leibniz quantum
compact metric space (D, Lp) together with two surjective
*-morphisms 711 and 71, such that:

The dual propinquity L] ((Z) = lnf { L@ (d) ‘ 7-[] (d ) = a}

forallj € {1,2} and a € sa (2;).
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Bridges and Tunnels

We propose the following notion of a pair of isometric
embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémoliere, 2013)

Let (24, L1) and (23, Ly) be two Leibniz quantum compact
metric spaces. A tunnel (D, Ly, 11, 712) is a Leibniz quantum
compact metric space (D, Lp) together with two surjective
*-morphisms 711 and 71, such that:

Li(a) = inf {Lp(d)|m;(d) = a}

forallj € {1,2} and a € sa (2;).

We do not require the tunnel to be of the form (A &
B, L, 1tq(, 7153 ) with 71y, 773 canonical surjections.
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Bridges and Tunnels

We propose the following notion of a pair of isometric
embeddings of Leibniz quantum compact metric spaces:

Definition (Latrémoliere, 2013)

Let (24, L1) and (23, Ly) be two Leibniz quantum compact
metric spaces. A tunnel (D, Ly, 11, 712) is a Leibniz quantum
compact metric space (D, Lp) together with two surjective
*-morphisms 711 and 71, such that:

Li(a) = inf {Lp(d)|m;(d) = a}

forallj € {1,2} and a € sa (2;).

We can add various conditions on the Leibniz quantum com-
pact metric space of a tunnel: strong Leibniz Lip-norm, com-
pact C*-metric space, etc...



Bimodules and Bridges

LESU A particular, common type of tunnels is given by the
Hausdorff K K . .

Propinquity following construction for two Leibniz quantum compact

metric spaces (2, Ly ) and (B, Ly):

O Let Q) be a A-B-bimodule, with a norm || - || such that:
lawblla < llallallw]lallblls

forallae A, b e Band w € Q.




Bimodules and Bridges

A particular, common type of tunnels is given by the
following construction for two Leibniz quantum compact
metric spaces (2, Ly ) and (B, Ly):
O Let Q) be a A-B-bimodule, with a norm || - || such that:
lacwbllo < [laflallewllallblls
foralla e 2, b € B and w € Q.
@ Choose wy € () and v > 0 such that, if we set:

b,y (a,b) = [lawo — wobl|

The dual propinquity

and then:
1
L(a,b) = max {Lg((u), Lo (b), ;bnwm (a, b)}

foralla € A, b € B, then (AP B, L, 7y, 773) is a tunnel
(where 719, 7T53 are canonical surjections).




Bridges

LGP The bimodule approach to the construction of Lip-norm is
WA  particularly interesting when the bimodules are

C*-algebras. We thus propose:
Definition (Latrémoliére, 2013)

Let (23,L1) and (25, L) be two Leibniz quantum compact
metric spaces. A bridge (D, w, p1,p2) is a unital C*-algebra ©
and two unital *-monomorphisms p; : 2; — D (j = 1,2) and
w € D such that there exists ¢ € . (D) with

¢((1 - w) (1 -w)) =0and ¢((1 - w)(1 - w)*) =0.

The dual propinquity
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Bridges

The bimodule approach to the construction of Lip-norm is
particularly interesting when the bimodules are
C*-algebras. We thus propose:

Definition (Latrémoliére, 2013)

Let (23,L1) and (25, L) be two Leibniz quantum compact
metric spaces. A bridge (D,w, p1,p2) is a unital C*-algebra ©
and two unital *-monomorphisms p; : 2; — D (j = 1,2) and
w € D such that there exists ¢ € . (D) with

¢((1 - w) (1 -w)) =0and ¢((1 - w)(1 - w)*) =0.

To every bridge, we can associate a tunnel. The question is
to choose the constant v such that:

L:(a,b) € sa(A®B)+— max {L1(a),L2(b),rly||aw — CUbHQ}

is admissible (difficulties arise: Rieffel, 0910.1968)



Defining a Distance from Tunnels: reach

How do we define a distance from tunnels?




Defining a Distance from Tunnels: reach

The Gromov-
Hausdorff
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How do we define a distance from tunnels? We associate
numerical quantities to a tunnel. The first is:

Definition (Latrémoliere, 2013)

Let (A, Ly), (B, Ly) be two Leibniz quantum compact
metric spaces and T = (D, Ly, 7y, 773 ) be a tunnel from
(A, Ly) to (B, Ly ). The reach p (T) of T is:

Hausmi (7t (£(A)), 5 (7 (B))),

where Haus,, is the Hausdorff distance on compact subsets
of a metric space (E, m).




Defining a Distance from Tunnels: depth

LECU  We must also account for the greater level of generality
Propinquity from Rieffel’s admissibility.

The dual propinquity




Defining a Distance from Tunnels: depth

LECU  We must also account for the greater level of generality
Hausdorff

Propinquity from Rieffel’s admissibility. The key is the quantity:
Definition (Latrémoliére, 2013)

Let (A, Ly), (B, Ly) be two Leibniz quantum compact
metric spaces and T = (D, Lp, 7y, 773 ) be a tunnel from
(A, Ly) to (B, Ly ). The depth § (7) of T is:

Hausm  (7(D),0 (7 (7 (A)) U s ((B))))

The dual propinquity

where co (A) is the weak* closure of the convex hull of any
subset A of .7 (D).




Defining a Distance from Tunnels: depth

LECU  We must also account for the greater level of generality
Hausdorff

WA from Rieffel’s admissibility. The key is the quantity:
Frédeéric

Latrémolidre, Definition (Latrémoliére, 2013)

PhD

Let (A, Ly), (B, Ly) be two Leibniz quantum compact
metric spaces and T = (D, Lp, 7y, 773 ) be a tunnel from
(A, Ly) to (B, Ly ). The depth § (7) of T is:

Hausm  (7(D),0 (7 (7 (A)) U s ((B))))

The dual propinquity

where co (A) is the weak* closure of the convex hull of any
subset A of .7 (D).

This quantity will prove useful in dealing with the triangle
inequality property of our new metric. No other approach
has ever involved our more general tunnels and only look
at A @ B, for which the depth is always 0.




Putting it together

LECCE  Originally, we define the length of a tunnel by:

Hausdorff
Propinquity

Definition (Latrémoliére, 2013)

The length of a tunnel T is the maximum of its reach and its
depth.




Putting it together

LECCE  Originally, we define the length of a tunnel by:

Hausdorff
Propinquity

Definition (Latrémoliére, 2013)

The length of a tunnel T is the maximum of its reach and its
depth.

Fr

A better, equivalent, synthetic quantity, however, is:
Definition (Latrémoliére, 2014)

Let T = (D, Lo, 7y, 713 ) be a tunnel between two Leibniz
quantum compact metric spaces (2, Ly ) and (B, Ly ). The
extent x (T) of T is:

The dual propinquity

max {Hauskag (#(D), 71 (FR)),)
Hausni,, (#(9), 765 (#(B)))}
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We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémoliére, 2013, 2014)

The dual propinquity A*((2, Ly), (B, Ly)) between two
Leibniz quantum compact metric spaces (2, Ly) and
(B, L) is:

inf {x (7)|7 is a tunnel from (2, Ly) and (B,Ly)} .




The Dual Propinquity

The Gromov-
Hausdorff
Propinquity

We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémoliére, 2013, 2014)

The dual propinquity A*((2, Ly), (B, Ly)) between two
Leibniz quantum compact metric spaces (2, Ly ) and
(B, L) is:

inf {x (7)|7 is a tunnel from (2, Ly) and (B,Ly)} .

We originally defined the dual propinquity in terms of
lengths of tunnels, though this requires more care; the re-
sulting metrics are equivalent.




The Dual Propinquity

The Gromov-
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We can define a new distance between Leibniz quantum
compact metric spaces:

Definition (Latrémoliére, 2013, 2014)

The dual propinquity A*((2, Ly), (B, Ly)) between two
Leibniz quantum compact metric spaces (2, Ly ) and
(B, L) is:

Tl prpry inf {x (7)|7 is a tunnel from (2, Ly) and (B,Ly)} .

We may restrict our attention to some specific classes of tun-
nels, and define specialized versions of the dual propinquity,
e.g. to compact C*-metric spaces.




Triangle Inequality

The Gromov-

Hausdorff Theorem (Latrémoliere, 2014)
Propinquity

- For all Leibniz quantum compact metric spaces (1,L1), (2a, L)
and (A3, L3), we have:

A*((%1,L1), (A3, L3)) < A™((A1,L1), (A2, L2))
+ A*((Ap, Ly), (A3, L3)).

The dual propinquity




Triangle Inequality

The Gromov-

Hausdorff Theorem (Latrémoliere, 2014)
Propinquity

- For all Leibniz quantum compact metric spaces (1,L1), (2a, L)
and (A3, L3), we have:

A*((%1,L1), (A3, L3)) < A™((A1,L1), (A2, L2))
+ A*((Ap, Ly), (A3, L3)).

Proof.
2 Let ;o = (D1p,Lip, 711, 7m2) be a tunnel from (%A, L1) to

(le, Lz) and T3 = (@23, Los, 02, p3) be a tunnel from (le, Lz)
to (Q[g, L3).




Triangle Inequality

The Gromov- . N
Hausdorff Theorem (Latrémoliere, 2014)
Propinquity
- For all Leibniz quantum compact metric spaces (1,L1), (2a, L)

and (A3, L3), we have:

A*((%1,L1), (A3, L3)) < A™((A1,L1), (A2, L2))
+ A*((Ap, Ly), (A3, L3)).

Proof.
Bl et © = D1p © Do3. Forall e > 0, set L(dqp,dp3) as:

1
max {Lu(dlz), Loz (da3), - |2 (d12) — p2(d2s) ng,}

forall dy, € sa (@12),d23 € sa (@23).




Triangle Inequality

The Gromov- . N
Hausdorff Theorem (Latrémoliere, 2014)
Propinquity
- For all Leibniz quantum compact metric spaces (1,L1), (2a, L)

and (23, L3), we have:

A*((%1,L1), (A3, L3)) < A™((A1,L1), (A2, L2))
+ A*((Ap, Ly), (A3, L3)).

Proof.

fhedutpronmnaity For all ¢ > 0, we check that 7. = (D12 ® D3, L, 711, 03) is a
tunnel from (244, L) to (A3, L) with:

X (Ts) <X (le) +X (T23) + &.




Triangle Inequality

The Gromov-

Hausdorff Theorem (Latrémoliere, 2014)
Propinquity

- For all Leibniz quantum compact metric spaces (1,L1), (2a, L)
and (A3, L3), we have:

A*((%1,L1), (A3, L3)) < A™((A1,L1), (A2, L2))
+ A*((Ap, Ly), (A3, L3)).

Proof.
e We conclude by choosing 71> and 13 such that

X (m2) < A™((2, L), (A2, L)) + €

and x (m3) < A*((UAp,L2), (A3, L3)) + ¢, then take the infi-
mum over &.

Ol
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Triangle Inequality

Theorem (Latrémoliere, 2014)

For all Leibniz quantum compact metric spaces (1,L1), (2a, L)
and (A3, L3), we have:

AT (A1, L1), (A3, L3)) < A™((1,L1), (™2, L2))
+ A*((Ap, Ly), (A3, L3)).

Proof.

Comment: the tunnels ®. are not in general of the form
(2 & As,...). To form such a tunnel would require tak-
ing a quotient, and this is why triangle inequality fails, for
instance, with Rieffel’s proximity, or the quantum Gromov-
Hausdorff distance involves non-Leibniz seminorms.

Ol

v
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The Gromov- ) 3N
Rl Theorem (Latrémoliere, 2013)
Propinquity

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
A (2 Ly), (B,Ly)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[




Distance Zero

The Gromov- ) 3N
Rl Theorem (Latrémoliere, 2013)
Propinquity

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
A (2 Ly), (B,Ly)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.

Fix ¢ > 0 and let . = (D¢, L, 715, 75) be a tunnel from
(A, Ly) to (B, Ly ) of extent ¢ or less.
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Distance Zero

Theorem (Latrémoliere, 2013)

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
A (2 Ly), (B,Ly)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.
For any a € sa (2) and | > Ly (a), introduce the sets:

[ (a]l) = {d € sa (D¢) : 7§(d) = a,Le(d) <1},

and
tr, (all) = w3 (I, (al)) -




The Gromov-
Hausdorff
Propinquity

Fr

The dual propinquity

Distance Zero

Theorem (Latrémoliere, 2013)

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
AT((, L), (B, Lw)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.

The target sets t, (a|l) are sort of an image of a for 7. If ¢ €
L (D¢) and d € I, (a|l) then there exists i € .7 (2) such that
mki, (¢, P o 9) < x (7). Then:

l9(d)] < |o(d) + ¢ o ma(d)] + |p(a)] < Ix () + [lalla-
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Distance Zero

Theorem (Latrémoliere, 2013)

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
AT((, L), (B, Lw)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.
One then deduces that:

diam (¢ (a[l), | - [|») < Ix () <e.
and t; (a|l) is a compact subset of the norm compact set {b €

s5a(B) : L(b) <1, bl < [lafl +1}. -

o’
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Distance Zero

Theorem (Latrémoliere, 2013)

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
AT(( L), (B, Lp)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.
Thus (t, (a|l)),-, admits a converging subnet for the Haus-
dorff distance induced by || - ||, whose limit is a singleton.

We can use a diagonal argument and our norm estimates to
remove the dependence of the subnet on a and /. This defines
a map 7t from 2 to B.

Ol

o’




Distance Zero

The Gromov- ~ os,
Rl Theorem (Latrémoliere, 2013)
Propinquity

For any two Leibniz quantum compact metric spaces (2, Ly) and
(SB Y L% ).‘
AT((, L), (B, Lw)) =0

if and only if there exists a *-isomorphism 7t : 2 — B such that
L% o7l = LQ[

Proof.

The multiplicative property of 7t requires the norm estimate
for [, (I|r), while the linearity does not.




Comparison with the quantum Gromov-Hausdorff
distance

The Gromov-

o] We established:

Propinquity

Theorem (Latrémoliere, 2013)

For any two Leibniz quantum compact metric spaces (A, Ly) and
(B, Ls):

distq((Ql, La), (B,Ly)) < A™((2A, Ly), (B,Ls)).
Moreover, if (A, Ly) = (C(X), Lx) and (B,Lys) = (C(Y),Ly)
el et where X, Y are compact metric spaces and Lx and Ly are Lipschitz

seminorms, then:

AN (A, Ly), (B,Ls)) < GH(X,Y).

Thus the dual propinquity is an analogue of the
Gromov-Hausdorff distance.




Completeness

Theorem (Latrémoliere, 2013)
The dual propinquity is complete.




Completeness

The Gromov- 2 o5
Hansdorff Theorem (Latrémoliere, 2013)
Propinquity

The dual propinquity is complete.

Proof.

It is sufficient to work with a sequence (2, L, ) e of Leibniz
quantum compact metric spaces such that for all n € IN there
exists 7, = (D, L", 71y, 05) with:
oo
YA () < oo
n=0

For any d = (dp)nen € [Then 50 (D), we set:

S(d) = sup{L"(d,) : n € N}.




Completeness

The Gromov- 2 o5
Hansdorff Theorem (Latrémoliere, 2013)
Propinquity

The dual propinquity is complete.

Proof.
Let

VneN
£= {(dn)nelN € Hsa (Dn) : mpg1(dn) = Pu(dny1) } .
e S ((dn)nen) < o0

The dual propinquity

Let § be the C*-algebra spanned by £in [],cy ©, and:

I ={(dn)nen €3 : lim |[du|o, = O}.

Our candidate for a limit to (2, L) nen is S/ 3.
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Completeness

Theorem (Latrémoliere, 2013)
The dual propinquity is complete.

Proof.

Ife > 0and d, € sa(D,) for some n € IN with L"(d,) < oo
then we can find d = (dy,) ew with L"(d,) < S(d) < L"(d,,) +

1
5€ and

(o]

Idllg < lldullo, +2 (L"(dn) +€) Y A (7).
n=0

If a,.1 = (wu(dy,), then there exists dy,y1 in Dyqq
with LnJrl(dnJrl) < Loppa(ang) + %5 and ||dn+1||©n+1 <
an-+1ll2,41 + 2(Lnt1 (an41) + €). Now Lysq(ani1) < L (dn).

Ol
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Completeness

The Gromov-

Hausdorff Theorem (Latrémoliere, 2013)
The dual propinquity is complete.

Proof.

We may use our lifting lemma to show for m € IN:
o the map (d)new € § — dm € Dy is a *-epimorphism,
@ the Lip-norms L™ are quotient of S.

We then get two estimates:

The dual propinquity

Hausmk,, (< (&n+1), (D)) < 2A (T0)
and

Hausmk,, (< (D), (Dnt1)) < 2max {A (1), A (Tus1) } -
[]

v
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Completeness

Theorem (Latrémoliere, 2013)
The dual propinquity is complete.

Proof.

We need a few technical lemmas to show that:
diam (. (§), mks) < oo.

From this, we then can prove that (§, S) is a Leibniz quantum
compact metric space.

Using Blaschke selection theorem and our estimates, the se-
quences (. (Ay)),en and (' (Dy)),en converge to some
weak* compact convex Z in (.7 (§), mks).




Completeness

Theorem (Latrémoliere, 2013)
The dual propinquity is complete.

Proof.

We now identify Z with the state space of § /5. Last, we en-
dow § /75 with the quotient of S, which is a Lip-norm. How-
ever, why is it a Leibniz Lip-norm?

This is shown by truncating sequences in § which all map to
the same element in § /7.

The dual propinquity




GPS

The Gromov
Hausdorff
Propinquity

@ Quantum Compact Metric Spaces

© The Gromov-Hausdorff Propinquity

@ The Quantum Propinquity

© Locally Compact Quantum Metric Spaces




Bridges and a new distance

For any two Leibniz quantum compact metric spaces, a
bridge v = (D, w, py, p) provides the ingredients for a
tunnel, if we can find A > 0 such that:

0,6 max {La(a) La(8), § lpr(o)eo — opala }

is admissible, and in particular, defines a tunnel.
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bridge v = (D, w, py, p) provides the ingredients for a
tunnel, if we can find A > 0 such that:

0,6 max {La(a) La(8), § lpr(o)eo — opala }

is admissible, and in particular, defines a tunnel.

Two Questions

@ How do we compute a possible A > 0?




Bridges and a new distance

For any two Leibniz quantum compact metric spaces, a
bridge v = (D, w, py, p) provides the ingredients for a
tunnel, if we can find A > 0 such that:

0,6 max {La(a) La(8), § lpr(o)eo — opala }

is admissible, and in particular, defines a tunnel.

Two Questions
@ How do we compute a possible A > 0?

@ What is the extent of the associated tunnel, as a
function of A > 0?




A distance from bridges: height

The Gromov-

il Let v = (D, w, 1y, 7 ) be a bridge from (2, Ly) and

Propinquity

(B, Ly).

Definition (F. Latrémoliere, 2013)
The 1-level set .7 (D, w) of w is:

S(®,w) = {go € y(@)‘ ggg :Zgzgl_—wa)izg 28' }

Our definition of bridge includes the requirement that this
set is non-empty for the pivot of the bridge, to avoid
trivialities.
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A distance from bridges: height

Let v = (D, w, 1y, 7 ) be a bridge from (2, Ly) and
(%/ LEB)

Definition (F. Latrémoliere, 2013)
The 1-level set .7 (D, w) of w is:

S(®,w) = {(p € y(@)‘ ZE& :Zg’él_—wcgzg igf }

Our definition of bridge includes the requirement that this
set is non-empty for the pivot of the bridge, to avoid
trivialities.

The first quantity associated with bridges measure how
much of an error we make by replacing the state space of 2
or ‘B by the images of the 1-level set.



A distance from bridges: height

The Gromov-
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Let vy = (D, w, 1y, 7t ) be a bridge from (2, Ly ) and
(B, Ly ). We thus introduce:

Definition (Latrémoliére, 2013)

The height of vy is the maximum of:
Hausmk , ({poma: ¢ € Z(D,w)}, 7 ()

and the same quantity for ‘B in place of 2.




A distance from bridges: height

The Gromov-
Hausdorff
Propinquity

» Let vy = (D, w, 1y, 7t ) be a bridge from (2, Ly ) and
SR (B, Ly). We thus introduce:
Definition (Latrémoliere, 2013)
The height of 7y is the maximum of:
Hausmk , ({poma: ¢ € Z(D,w)}, 7 ()

and the same quantity for ‘B in place of 2.

The next quantity we compute from bridges measure how
far 2l and B are from the perspective of the bridge
seminorm.




A distance from bridges: reach

DhelClonon Let v = (D, w, g, T ) be a bridge from (2, Ly ) and

Hausdorff

Propinquity (%’ LSB ) X
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Definition (Latrémoliere, 2013)

The reach of the bridge v is the Hausdorff distance in ©
between:

{ma(a)w € sa (A) : Ly(a) <1} and {wrmes(b) : Ls(b) < 1}.




A distance from bridges: reach

DhelClonon Let v = (D, w, g, T ) be a bridge from (2, Ly ) and

Hausdorff

Propinquity (%, L‘B ) .

Definition (Latrémoliere, 2013)

The reach of the bridge v is the Hausdorff distance in ©
between:

{ma(a)w € sa (A) : Ly(a) <1} and {wrmes(b) : Ls(b) < 1}.

The reach informs us, informally, on how far the images of
the level set of w in .(2) and .7 (B) are. It is, in some
sense, the distance between the images of the Lip-balls for
the bride seminorm:

bny () 2d1,d) EDPDD — ||d1(,d = (Udz”@.
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The Gromov-
Hausdorff

@A We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémoliere, 2013)

The length of a bridge is the maximum of its reach and
height.




The Quantum Propinguity

The Gromov-

Hmlsdm:_ff
Wl We can use the reach and height of a bridge to define a new

metric between Leibniz quantum compact metric spaces, or
a tunnel.
Definition (Latrémoliere, 2013)

The length of a bridge is the maximum of its reach and
height.

We could try to define the distance between two Leibniz
quantum compact metric spaces as the infimum of the
lengths of all bridges between them. Yet this fails to satis-
ties the triangle inequality.




The Gromov-
Hausdorff
Propinquity

The Quantum Propinguity

We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémoliere, 2013)

The length of a bridge is the maximum of its reach and
height.

Instead, we define a trek between two Leibniz quantum com-
pact metric spaces (2, Ly) and (B,Ly) is a finite path of
bridges 71, T, . .., T, where T ends where Tj,1 starts, and Ty
starts at (2, Ly ) while 7, ends at (B, Ly ). The length of a trek
is the sum of the lengths of its paths.



The Quantum Propinguity

The Gromov-
Hausdorff

@A We can use the reach and height of a bridge to define a new
metric between Leibniz quantum compact metric spaces, or
a tunnel.

Definition (Latrémoliere, 2013)

The length of a bridge is the maximum of its reach and
height.

Definition (Latrémoliére, 2013)

The infimum of the length of all treks from (2, Ly) to
(B, Ly) is a called the quantum propinquity between (2, Ly )
and (B, Ly).




The Quantum Propinquity as a distance

The Gromov- P o
Hausdorff Theorem (Latrémoliere, 2013)
Propinquity

The quantum propinquity is a metric on the class of Leibniz
quantum compact metric spaces which dominates the dual
propinquity, and its restriction to the classical compact metric
spaces is dominated by the Gromov-Hausdorff distance.
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The Quantum Propinquity as a distance

Theorem (Latrémoliere, 2013)

The quantum propinquity is a metric on the class of Leibniz
quantum compact metric spaces which dominates the dual
propinquity, and its restriction to the classical compact metric
spaces is dominated by the Gromov-Hausdorff distance.

Proof of the comparison to the dual propinquity.

Given a bridge v = (D, w, 7y, 7t ) of nonzero length
A(y) > 0 from (2, Ly) to (B, Ly), if:

L: (a,b) — max {Lg[(a),L%(b), L||7'£gl(a)w — wn%(b)Hg}

A7)

then (A & B, L, 1q, 1) is a tunnel of length A, where 1y, 153
are the canonical surjections.

Ol

v




The Gromov-
Hausdorff
Propinquity

Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)
Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let
ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),
@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.
Then:
lim A" (C* (2*,0),C" (%, 04) ) =0.

n—o0
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

This result strengthens our result for dist,.
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Hausdorff
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

One approach is to use our old techniques and the unital nu-
clear distance (Kerr, Li). This relies on Blanchard’s subtrivi-

alization result — complicated.
L]
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

A somewhat more explicit approach uses the left regular rep-
resentation, or sum of such, on ¢?(Z%).
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

We construct bridges (éz(Zd), T, m, p) between quantum or
fuzzy tori, with 7 and p left regular representations (or

sums) and T trace class, diagonal in the canonical basis.
Ul

y
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

While we use estimates from our original work, we can not
simply “truncate” elements using Fejer kernels, as we wish
to stay within the C*-category.

L]
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Using Bridges for Quantum Tori

Theorem (Latrémoliere, 2013)

Letd € ]N \ {0,1}, o a multiplier of Z¢. For each n € NN, let

ky, € ]N and oy, be a multiplier of Z{ = z* [k, 7¢ such that:
Q lim, oo ky = (00,...,00),

@ the unique lifts of 0y, to 7 as multipliers converge pointwise
too.

Then:
lim A" (€ (2,0),C" (Z,,04) ) =0.

Notes on the proof.

Bridges, and in particular T, replaces, to a large extent, this
truncation process.
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Escape at Infinity

The Gromoo- - i
e For a non-compact locally compact metric space (X, m), the

Propinquity Monge-Kantorovich metric is less well-behaved:




Escape at Infinity

The Gromov- - 1
e For a non-compact locally compact metric space (X, m), the

WA  Monge-Kantorovich metric is less well-behaved:
' @ it is not a metric as it may be infinite,

Proof.

Let J, denote the Dirac measure at x € R. Let L be the
Lipschitz seminorm associated with the usual metric on R.

mkp (50, Z 2”1(522n> = 00.

nelN




Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:
© it is not a metric as it may be infinite,
@ it does not metrize the weak* topology, even on closed
balls,

Proof.

Working in R again, we have:

n 1
0 1) =1
VnelN mk. (50'114—1 0+n—|—1 n+1)

yet ((50, %0 + nlﬁ(sn+1)n€]N weak* converges to dp. Ol




Escape at Infinity

UESSea  For a non-compact locally compact metric space (X, m), the

Propinguity Monge-Kantorovich metric is less well-behaved:

' O it is not a metric as it may be infinite,

@ it does not metrize the weak* topology, even on closed
balls,

@ its topology is not locally compact.




Escape at Infinity

T’;;’ﬂijggff;;" For a non-compact locally compact metric space (X, m), the
LU Monge-Kantorovich metric is less well-behaved:
: © it is not a metric as it may be infinite,

@ it does not metrize the weak* topology, even on closed

balls,

@ its topology is not locally compact.
Problems 1,2,3 are attributable to one main feature of the
non-compact case: probability measures can escape at

infinity.
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Escape at Infinity

For a non-compact locally compact metric space (X, m), the
Monge-Kantorovich metric is less well-behaved:

O it is not a metric as it may be infinite,

@ it does not metrize the weak* topology, even on closed

balls,

@ its topology is not locally compact.
Problems 1,2,3 are attributable to one main feature of the
non-compact case: probability measures can escape at
infinity.
Moreover, the restriction of the Monge-Kantorovich metric
to pure states is not the original metric in general. The
natural context for the Monge-Kantorovich metric consists
of the proper metric spaces.



A first approach

The Gromov- SON0 2 3N
Hausdorff Definition (Latrémoliere, 2007)

Propinquity

The bounded-Lipschitz distance bl associated with a Lipschitz
pair (2, Ly) is defined for any ¢, € .7 () as:

sup {|¢(a) — ¢(a)| :a € sa (A), La(a) <1, [|ala <1}




A first approach

The Gromov- SON0 2 3N
Hausdorff Definition (Latrémoliere, 2007)

Propinquity

The bounded-Lipschitz distance bl associated with a Lipschitz
pair (2, Ly) is defined for any ¢, € .7 () as:

sup {|¢(a) — ¢(a)| :a € sa (A), La(a) <1, [|ala <1}

Theorem (Latrémoliere, 2007)
Let (2, L) be a Lipschitz pair and let:

B={aecsa(A):La) <land|allyg <1}

Then the following are equivalent:
O Dbl metrizes the weak* topology of .7 (),
@ For someh € A, h > 0 the set h'Bh is norm precompact,
@ Forallh € A,h > 0, the set h'Bh is norm precompact.




A first approach

The Gromov- SON0 2 3N
Hausdorff Definition (Latrémoliere, 2007)

Propinquity

The bounded-Lipschitz distance bl associated with a Lipschitz
pair (2, Ly) is defined for any ¢, € .7 () as:

sup {|¢(a) — ¢(a)| :a € sa (A), La(a) <1, [|ala <1}

@ This notion was used, for instance, by Bellissard,
Marcolli, Reihani (2010) for the study of metric
properties of spectral triples over C*-crossed-products
by Z.

@ This notion was also used in mathematical physics (J.
Wallet, Cagnache-d’ Andrea-Martinetti)




A first approach

The Gromov- SON0 2 3N
Hausdorff Definition (Latrémoliere, 2007)

Propinquity

The bounded-Lipschitz distance bl associated with a Lipschitz
pair (2, Ly) is defined for any ¢, € .7 () as:

sup {|¢(a) — ¢(a)| :a € sa (A), La(a) <1, [|ala <1}

Howevwver...

The bounded-Lipschitz distance only sees the space
“locally”, i.e. balls of a radius above 1 are the whole space.
We still wish to understand the Monge-Kantorovich metric.
We are back to: How do we control behavior at infinity? This
was unsolved for more than a decade!




Dobrushin’s tightness

el Dobrushin discovered a sufficient condition for metrizing

Propinquity the weak* topology on well-behaved sets of probability
measures:

Theorem (Dobrushin, 1970)

Let (X, d) be a (locally compact) metric space. If a subset T of
L (Co(X)) satisfies for some xg € X:

1i / d(xo,x)dP(x): Pe 7\ =0
rLIEIOSUP{ x:d(x,x0)>1 (Xo X) (X) }

then the weak™ topology restricted to 7 is metrized by the
Monge-Kantorovich metric associated to the Lipschitz seminorm
ford.




Dobrushin’s tightness

el Dobrushin discovered a sufficient condition for metrizing

Propinquity the weak* topology on well-behaved sets of probability
measures:

Theorem (Dobrushin, 1970)

Let (X, d) be a (locally compact) metric space. If a subset T of
L (Co(X)) satisfies for some xg € X:

1i / d(xo,x)dP(x): Pe 7\ =0
rbrgosup{ x:d(x,x0)>1 (X() X) (X) }

then the weak™ topology restricted to 7 is metrized by the
Monge-Kantorovich metric associated to the Lipschitz seminorm
ford.

It is very challenging to extend this notion to the
noncommutative setting.




Quantum Topographic Spaces

The Gromov- .. . =
Hansdorff Definition (Latrémoliére, 2012)

Propinquity

A Lipschitz triple (2, L, 901) is a Lipschitz pair (2, L) and an
Abelian C*-subalgebra 9t of 2 containing an approximate
unit for 2.

Let () be the collection of all compact subsets of the
Gel’fand spectrum of 9t and xx be the indicator function of
Kin 9.

Definition (Latrémoliére, 2012)

A subset .7 of the state space . (2() of a Lipschitz triple
(A, 9, L) is tame when there exists y € . (2) and
C € K(M) such that u(xc) = 1 and:

' T ,a € sa(u)
i B : (NS )
KGIICIF )sup {l(p(a XKAXK)| L(a) < 1,u(a) =0 } =0

v




Quantum Locally Compact Metric Spaces

The Gromov- .. L o
Rl Definition (Latrémoliére, 2012)
Propinquity

A quantum locally compact metric space is a Lipschitz triple
such that:

O ForallK € (M), theset {9 € 7 (A) : p(xx) = 1} has
finite radius for mk_,

@ The topology induced on every tame subset of .7 ()
by mk_ is the weak* topology.




Quantum Locally Compact Metric Spaces

The Gromov- Y » EN
Rl Definition (Latrémoliére, 2012)
Propinquity

A quantum locally compact metric space is a Lipschitz triple
such that:

O ForallK € (M), theset {9 € 7 (A) : p(xx) = 1} has
finite radius for mk_,

@ The topology induced on every tame subset of .7 ()
by mk_ is the weak* topology.

Example (Latrémoliére, 2012)

If (C(R2),L?(R?) ® €?, D) is the Gayal, Gracia-Bondia,
Iochum, Schiicker, Varilly spectral triple over the Moyal
plane C(IR2), then (C(R2),L,M,) is a quantum locally
compact metric space for 9, generated by the Harmonic
oscillator basis projections and L(a) = ||[D, 4]|| (@ € C(R2)).




Characterization of quantum locally compact metric
spaces

The Gromov-
S Theorem (Latrémoliére, 2012)
Let (2, L, 9) be a Lipschitz triple. The following are equivalent:
O (2, L,9M) is a quantum locally compact metric space,
@ There exists a state y € .7 (A), K € (M) with u(K) =1
such that for all compactly supported a,b € I, the set:

{acb : ¢ € sa (u),L(c) < 1,u(c) =0}

is norm precompact,

@ For all states y € .7 () for which there exists K € IC(90)
with u(K) = 1, and for all compactly supported a,b € M,
the set {acb : ¢ € sa (uA),L(c) <1,u(c) = 0} is norm
precompact.




GPS

The Gromov
Hausdorff
Propinquity

@ Quantum Compact Metric Spaces

© The Gromov-Hausdorff Propinquity

© Locally Compact Quantum Metric Spaces

@ Convergence for locally compact quantum metric
spaces




Proper Quantum Metric Spaces

The Gromov-

Hausdorff An analogue of proper quantum metric spaces is given by:

Propinquity

Definition (Latrémoliére, 2014)
A quantum locally compact metric space (2, L,901) is a
strong proper quantum metric space when:

@ L is lower semi-continuous,

@ L is Leibniz,

@ there exists a compactly supported approximate unit
(en)nen for A in M such that lim,,_, L(e,) =0,

@ the restriction of L to 9t has a dense domain.




Proper Quantum Metric Spaces

The Gromov-

Hausdorff 1 1 1 .
Propinguity An analogue of proper quantum metric spaces is given by:

Definition (Latrémoliére, 2014)
A quantum locally compact metric space (2, L,901) is a
strong proper quantum metric space when:

O L is lower semi-continuous,

@ L is Leibniz,

@ there exists a compactly supported approximate unit

(en)nen for A in M such that lim,,_, L(e,) =0,

© the restriction of L to 9 has a dense domain.
A pointed proper quantum metric space (2, L, 0, ) is a
proper quantum metric space (2, L, %) and a state y of 2
whose restriction to 9t is pure.




Gromov-Hausdorff Convergence

The Gr v . . . o
Hansdorff We wish to define a notion of convergence for pointed
Propinquity

proper quantum metric space which extends the original
Gromov-Hausdorff convergence for pointed proper metric
spaces.




Gromov-Hausdorff Convergence

The Gromov- . . . .
Hausdorf We wish to define a notion of convergence for pointed

Propinquity

proper quantum metric space which extends the original
Gromov-Hausdorff convergence for pointed proper metric
spaces.

Definition (Gromov, 1981)

Let (X, x) and (Y, y) be two pointed proper metric spaces.
Let 0, be the infimum of ¢ > 0 such that for some isometric
embeddings of X, Y in some Z then:

%X (x/r) gS Y/ '%Y (]//T) g& X/
x and y are within e in Z.
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Gromov-Hausdorff Convergence

We wish to define a notion of convergence for pointed
proper quantum metric space which extends the original
Gromov-Hausdorff convergence for pointed proper metric
spaces.

Definition (Gromov, 1981)

Let (X, x) and (Y, y) be two pointed proper metric spaces.
Let 0, be the infimum of ¢ > 0 such that for some isometric
embeddings of X, Y in some Z then:

<@X (x/r) gS Y/ %Y (]//7’) g& X/
x and y are within e in Z.

The Gromov-Hausdorff distance between (X, x) and (Y, y)
is the infimum of » > 0 such that J,-1 < e.




The problem of lifting Lipschitz functions

The Gromov-
Hausdorff
Propinquity

A difficulty in the locally compact concerns (even though
McShane’s theorem still holds, of course):

Lipschitz Extensions

If f is a 1-Lipschitz function on a locally compact metric
space which vanishes at infinity, then it may not have a
1-Lipschitz extension which vanishes at infinity. For
instance, if X = (0,1) x [0,1],and Y = (0,1) x {1}, and if f
is 2 on Y, then no extension of f is both 1-Lipschitz and
vanish at infinity.




The problem of lifting Lipschitz functions

The Gromov-
Hausdorff
Propinquity

A difficulty in the locally compact concerns (even though
McShane’s theorem still holds, of course):

Lipschitz Extensions

If f is a 1-Lipschitz function on a locally compact metric
space which vanishes at infinity, then it may not have a
1-Lipschitz extension which vanishes at infinity. For
instance, if X = (0,1) x [0,1],and Y = (0,1) x {1}, and if f
is 2 on Y, then no extension of f is both 1-Lipschitz and
vanish at infinity.

We need to rework our notion of a tunnel to accommodate
difficulties in lifting Lipschitz functions. The situation is
manageable when working with proper metric spaces, but
is surprising.




Some notations

The Gromov-

Hausdorff Definition (Latrémoliere, 2014)

Propinquity

Let (A, Lo, My, pg) and (B, Ly, My, i3 ) be two pointed
proper quantum metric spaces. A passage

(D, Lo, My, 1y, 7t ) is @ quantum locally compact metric
space (D, Lp, My ) with two *morphisms 7y : © — A and
s : D — B mapping My to My, M respectively..
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Some notations

Definition (Latrémoliere, 2014)

Let (A, Lo, My, pg) and (B, Ly, My, i3 ) be two pointed
proper quantum metric spaces. A passage

(D, Lo, My, g, 7w3) is a quantum locally compact metric
space (D, Lp, My ) with two *morphisms 7y : © — A and
s : D — B mapping My to Ny, My respectively..

Definition (Latrémoliere, 2014)

Let (2, L, 90, i) be a pointed proper quantum metric space.
For any compact K in the Gel'fand spectrum o (90t) of 9, let
pk be the indicator function of K in 2**. If K is the closed
ball centered at u and radius r in ¢(90) then px is also
denoted by p,. The elements a € sa (2) such that pxapx = a
are said to be locally supported.




Left Admissibility

The Gromov-

ey Definition (Latrémoliere, 2014)

Propinquity

Let r > 0. An left r-admissible pair (K, €) is a compact K in
o(Myp) and e > 0 such that for any a € sa (A) with
Ly(a) < 1and prap, = a, there exists d € sa (D):

O Lo(d) = Lu(a),




Left Admissibility

The Gromov-

ey Definition (Latrémoliere, 2014)

Propinquity

Let r > 0. An left r-admissible pair (K, €) is a compact K in
o(Myp) and e > 0 such that for any a € sa (A) with
Ly(a) < 1and prap, = a, there exists d € sa (D):

0 Lo(d) = La(a),

@ pxdpx =d,




Left Admissibility

Definition (Latrémoliére, 2014)

Let r > 0. An left r-admissible pair (K, €) is a compact K in
o(Myp) and e > 0 such that for any a € sa (A) with
Ly(a) < 1and prap, = a, there exists d € sa (D):

O Lo(d) =Ly(a),
O pxdpx =4,
(8] Pr+4e7Tss (d)p7+4s = Tl (d),




Left Admissibility

The Gromov-

ey Definition (Latrémoliere, 2014)

Propinquity

Let r > 0. An left r-admissible pair (K, €) is a compact K in
o(Myp) and e > 0 such that for any a € sa (A) with
Ly(a) < 1and prap, = a, there exists d € sa (D):

Q Lo(d) = Lu(a),

O pxdpx = d,

© pri4e7t(A)prige = (),
O We have:

{poma:pe L (A):9(pr)} C{p €S (D):9(px) =1
Ce{pomp:9ec.L(B): ¢(pr)}




Left Admissibility

The Gromov-

ey Definition (Latrémoliere, 2014)

Propinquity

Let r > 0. An left r-admissible pair (K, €) is a compact K in
o(Myp) and e > 0 such that for any a € sa (A) with
Ly(a) < 1and prap, = a, there exists d € sa (D):

Q Lo(d) = Lu(a),

Q pxdpx =d,

O priaemts (d)prr4e = s (d),
O We have:

{poma:pe L (A): @(pr)} C{p €S (D): p(px) =1}
Ce{pomp:9 € 7(B): 9(p)}

The notion of right admissibility is defined identically.




Admissibility and Extent

The Gromov-
Hausdorff
Propinquity

The notions of admissibility and extent are interdependent
in this context.

Definition (Latrémoliere, 2014)

Let T = (D, Lo, My, 719, 713 ) be a passage from

(Ql, LQI, gﬁgl, ‘MQ[) to (%, L%, m%, }4%) A pair (K, 8) is
r-admissible when it is both left and right r-admissible,

while Lg restricts to a Leibniz Lip-norm on the K-locally
supported elements of ©, and is lower semi-continuous.




Admissibility and Extent

The Gromov-
Hausdorff
Propinquity

The notions of admissibility and extent are interdependent
in this context.

Definition (Latrémoliere, 2014)

Let T = (D, Lo, My, 719, 713 ) be a passage from

(Ql, LQ{, gﬁgl, ‘MQ[) to (%, L%, m%, }4%) A pair (K, 8) is
r-admissible when it is both left and right r-admissible,

while Lg restricts to a Leibniz Lip-norm on the K-locally
supported elements of ©, and is lower semi-continuous.

Definition (Informal, Latrémoliere, 2014)

The r-extent of a passage is the smallest ¢ > 0 such that
(K, €) is r-admissible for some compact K. A passage with a
finite r-extent is called a r-tunnel.




The topographic Propinquity

Definition (Latrémoliere, 2014)

Let A, B be two pointed proper quantum metric spaces. The
r-local propinquity A*,(A,B), for r > 0, between A and B is
the infimum of the r-extents of -tunnels between A and BB.




The topographic Propinquity

The Gromov-

Hausdorff Definition (Latrémoliere, 2014)

Propinquity

Let A, B be two pointed proper quantum metric spaces. The
r-local propinquity A*,(A,B), for r > 0, between A and B is
the infimum of the r-extents of r-tunnels between A and B.

Definition (Latrémoliére, 2014)

The topographic propinquity A*opo(A, B) between two
pointed proper quantum metric spaces A and B is:

max {inf{e >0: Al e}, \f} .
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The Gromov-
Hausdorff
Propinquity

Definition (Latrémoliere, 2014)

Let A, B be two pointed proper quantum metric spaces. The
r-local propinquity A*,(A,B), for r > 0, between A and B is
the infimum of the r-extents of r-tunnels between A and B.

Definition (Latrémoliere, 2014)

The topographic propinquity A*opo(A, B) between two
pointed proper quantum metric spaces A and B is:

max {inf{e >0: Al e}, \f} .

The topographic Gromov-Hausdorff propinquity is an
infra-metric which generalizes the dual propinquity, up to
equivalence.



The topographic Propinquity as Inframetric

The Gromov- % oo
it Theorem (Latrémoliere, 2014)
Propinquity

Let A, B and D be three pointed proper quantum metric spaces.
Then:

° A*topo(A/ IB) — A*topo(IB/ A)r




The topographic Propinquity as Inframetric

The Gromov- % oo
it Theorem (Latrémoliere, 2014)
Propinquity

Let A, B and D be three pointed proper quantum metric spaces.
Then:

o A*topo(A/ ]B) — A*topo(IB/ A)/
o A*tOPO(A/]B) < 2 (A*t()p()(AI]D) + A*tOPO(D/B))/




The topographic Propinquity as Inframetric

The Gromov- % N
Hausdorff Theorem (Latrémoliere, 2014)
Propinquity

Let A, B and D be three pointed proper quantum metric spaces.
Then:

A,B) = A opo(B, A),

A/ IB) S 2 (A*topo(A/ ID) o A*topo(]D/ IB))/

@ A¥opo(A,B) = 0 if and only if there exists a *-isomorphism
7T A — B such that Ly o T = Ly,




The topographic Propinquity as Inframetric

Theorem (Latrémoliere, 2014)
Let A, B and D be three pointed proper quantum metric spaces.
Then:

o A*topo (A/ ]B) — A*topo(IB/ A)/

o A*topo (A/ IB) S 2 (A*topo (A/ ID) = A>ktopo (]D/ IB))/

@ Atopo(A,B) = 0 if and only if there exists a *-isomorphism
7T A — B such that Ly o T = Ly,

@ The topology induced by N*iopo is the same as the topology
of the dual propinquity for Leibniz quantum compact metric
spaces. Moreover, if proper metric spaces converge to some
limit for the Gromov-Hausdorff distance, then so do they for
the topographic propinquity.




The topographic Propinquity as Inframetric

The Gromov- % N
Hausdorff Theorem (Latrémoliere, 2014)
Propinquity

Let A, B and D be three pointed proper quantum metric spaces.
i, [

o A*topo (A/ ]B) — A*topo(IB/ A)/

o A*topo (A/ IB) g 2 (A*topo (A/ ID) = A*topo (ID/ IB))/

@ Atopo(A,B) = 0 if and only if there exists a *-isomorphism
7T A — B such that Ly o T = Ly,

@ The topology induced by Atopo is the same as the topology
of the dual propinquity for Leibniz quantum compact metric
spaces. Moreover, if proper metric spaces converge to some
limit for the Gromov-Hausdorff distance, then so do they for
the topographic propinquity.

Thus we have a generalized Gromov-Hausdorff convergence for
noncommutative geometry.
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