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Introduction
• Early stage non-small cell lung cancer (NSCLC)
Surgery is standard treatment 
35-50% will relapse within 5 years even after complete resection

• Adjuvant chemotherapy
Clinical trials demonstrate modest benefit: 4-15% for 5-yr survival
(Meta-analysis showed a 8.9% 5-yr survival benefit from cisplatin-

vinorelbine ) 
Clinical trial results  respect to treatment effect of entire population
May only benefit to a group patients
May cause serious adverse effects and detrimental effects
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Introduction
Tumor sample routinely collected accompanying cancer 

clinical trials 
Pretreatment tumor sample profiles possess the information 

about the disease and its sensitivity to therapy
Affymetrix microarray: Genome-wide measurement of 

expression levels
Statistical analysis can extract information to predict patients 

outcome and response to treatment
• Objective

Using microarray gene expression profiling to identify a gene 
signature which classifies patients who benefit most from the 
chemotherapy in early stage resected NSCLC patients
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Number of Patients Total
In the trial 
HR: 0.69, 95% C.I. (0.52, 0.91), p 
= 0.04. (IB: HR: 0.94, II, HR: 0.59)

482
(240 obs. 242 

Chemo) 

Available frozen tissue with 
consent for future studies 169

Microarray studies completed 133

Observation = 62 Adjuvant chemo = 71

Snap-frozen Tumor Samples 
Available for Microarray Studies



Gene microarray data
Microarrays:

• Tools used to measure the presence and abundance 
of gene expression in tissue.

• microarray technologies provide a powerful tool by 
which the expression patterns of thousands of genes 
can be monitored simultaneously

Gene Expression:
• The degree to which a gene is active in a certain 

tissue of the body, measured by the amount of mRNA 
in the tissue. 

• Gene expression depends on environment!
• Gene expression varies with time !
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Gene Expression Matrices
Introduction Preprocessing Gene signature selection Summary

• In a gene expression matrix, 
rows represent genes and 
columns represent 
measurements from different 
experimental conditions 
measured on individual 
arrays. 

• The values at each position in 
the matrix characterise the 
expression level (absolute or 
relative) of a particular gene 
under a particular 
experimental condition.

Gene Expression Matrix

Samples

Gene expression levels

Genes
probesets
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Microarray data preprocessing
• Preprocessing
Normalization
Adjusting batch effect

• Microarray samples
BR10. clinical trial: 133 microarray samples
Affymetrix U133A microarrays
Each array chip contains  ~ 20,000 gene probesets
Processed from probe results file: ‘*.cel’ file

• Analysis tools
BRB-Array Tool (by NCI biometric research branch)
R based Bioconductor genome analysis packages
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Normalization
• Why?
Microarray data is highly noisy - intensity imbalance between RNA 

samples
Due to technical reason, not biological difference of samples

Purpose: adjust gene expression values of all genes so that the 
ones that are not really differentially expressed have similar values 
across the arrays
Normalisation is a general term for a collection of methods that 

are directed at reasoning about and resolving the systematic 
errors and bias introduced by microarray experimental platforms

• Steps
Background correction:  remove local artifacts and noise
Normalization: remove array effects so the arrays are comparable
Summarization: combines probe intensities across arrays

• Methods: RMA, GC-RMA, MAS 5.0 … …
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Normalization - single array boxplot
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Before normalizationBefore normalizationBefore normalization

After RMA normalization
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Batch effect
• Systematic technical differences when samples are processed 

and measured in different batches (e.g. processing dates)
• Unrelated to any biological variation, recorded during 

experiment

• Methods (Location-scale)
Apply models to adjust the gene probesets to have similar 

mean and variance in each batch
BMC, COMBAT, GENENORM, DWD … …

• Total 133 samples and 6 batches
Batch ID 1 2 3 4 5 6
Batch name 1109 1110 1116 1119 1130 0603
number of arrays 2 45 43 18 3 22
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Batch effect – principal component plots
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Predictive gene signature selection
• Purpose: Selection a group of genes that classify 

patients who are most benefit from the received 
treatment

• Main issues
High dimensional covariates (p >> n) ----
variable selection
Treatment − covariates interaction

presence of main effects:
• Increase the difficulty to detect treatment –
covariates interaction

• Increase the number of covariates
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Predictive gene signature selection
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• Informative gene selection
-- Non-informative filtering: exclude probesets that ave low 
variance, and low intensity (expression levels)
-- Informative filtering: Uni-probeset, study treatment, and 
their interaction term included, keep probesets with 
predictive potential, with small p-value for the interaction 
term
• Multi-genes that are predictive of treatment effect:  Rank 

probesets based on the predictive p-value (p-value of the 
interaction term) in uni-probeset analysis. 

• Multi-genes signature selection: modified covariates 
without main effects (Tian et al, JASA accepted March, 
2014).

Tian L, Alizadeh A, Gentles J, Tibshiran R. A Simple method for detecting interactions 
between a treatment and a large number of covariates. arXiv:1212.2995 [stat.ME]. Dec 
2012
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Modified covariates method
• Modified covariate: 𝑊𝑊(𝑍𝑍)∗ = 𝑊𝑊(𝑍𝑍) � 𝑇𝑇

2

𝑍𝑍 : covariates 𝑊𝑊 (𝑍𝑍) : standardized 𝑍𝑍
T: treatment 

T =  1 chemotherapy
T = -1 observation

• Cox regression model using modified covariate
ℎ 𝑡𝑡 𝑍𝑍,𝑇𝑇 = ℎ0(𝑡𝑡)𝑒𝑒γ.𝑊𝑊(𝑍𝑍)∗

• �𝛾𝛾.𝑊𝑊(𝑧𝑧)∗ can be used to stratify patients for individualized 
treatment selection
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Variable selection
• Least square model
 High variance, poor prediction, especially p is large
 instable, not suitable for p >> n cases

• L1 penalized model – Lasso (Tibshirani, 1996)
Bias-variance trade off to improve prediction accuracy
Provides sparse solutions: useful for variable selection in n << p case. 

 Limitation
• Selects at most n variables before it saturates
• For a group of highly correlated variables, only select one variable from a group and 

ignore others

• L2 penalized model – Ridge regression
– Removes the limitation on the number of selected variables;
– Encourages grouping effect; select correlated variables
– Stabilizes the L1 regularization path.
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__________________________________
Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society, Series B, 1996; 58: 267–288
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Variable selection
• Elastic net (Zou, 2005)                            L2 penalty     L1 penalty

L1 penalty: generates a sparse model for variable selection
L2 penalty:

• remove the limitation on number of selected variables
• encourage group selection, and stabilized L1

Tuning parameters: (λ2, α) where 𝛼𝛼 = 𝜆𝜆1
𝜆𝜆1+𝜆𝜆2

,  𝛼𝛼 ∈ [0,1]

(λ2, α) : tuned by in a grid search with min cross validation error 
rule

𝛼𝛼: (𝛼𝛼 = 0.1.  was chosen). 

___________________________________
Zou, Hui; Hastie, Trevor (2005). Regularization and variable selection via the elastic net. J. Royal. 
Stat. Soci, Series B: 301–320
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Gene signature selection procedure
• Microarray preprocessing
RMA normalization / DWD adjusting batch effect

• Divide samples into training & test sets
Have similar survival experience (stratified by disease stage & 

histology)
Training set is used to select predictive gene signature

• Gene probesets pre-selection
Non-informative filtering: Filtered out 1/3 gene probesets with low 

variance across samples, and mean intensity < 4.
Informative filtering: Fit Cox’s model with modified covariate 

without main effect
• Pre-select gene probesets with absolute estimate of interaction 

effect no less than 0.4. (662 gene probesets remain)
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• Predictive gene signature selection
Fit multivariable Cox’s model with modified 
covariates based on preselected gene probesets
Elastic net for variable selection
Bootstrap samples and fit above model 1000 
times, and rank probe according the frequency 
they appeared in the model
PCA to synthesize information of the most often 
selected probesets (k from 1 to 150).

Gene signature selection
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Gene signature selection
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10 folds cross-validation
Fit Cox’s model with treatment, PC1 and their
interaction terms, and generate cross validation
predictive scores: B1+B3*PC1

B1: coefficient of treatment estimate
B3: coefficient of treatment and PC1 interaction
estimate

Classify patients into low, middle and high groups
using CV predictive score
Predictive gene signature: a group a gene
probsets that best separate low score group of
patients by treatment arms (min p-value)
34-gene probesets were selected.
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Predict treatment effect
Validate the signature in the testing set
Generate predictive scores of patients in training set based on 

selected gene signature using (B3*PC1)
Classify patients into low, middle and high predictive score 

groups using 1/3 and 2/3 quantiles of predictive scores as cut-
off points
Generate predictive scores of patients in test data set based on 

the information in training set:
• Coefficient of loading matrix of PC1
• Estimate coefficient of the interaction term of treatment and 

PC1
Classify test set patients into low, middle and high predictive 

score groups using the cut-off points in the training set
Low predictive score group benefits from chemo therapy
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Training set

Testing set
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Overall survival of 133 patients in predictive 
score groups based on 34-gene signature

Introduction Preprocessing Gene signature selection Summary

Probeset PC1
loading coef. Probeset PC1

loading coef.
Probeset_1 0.135 Probeset_18 -0.066

Probeset_2 0.153 Probeset_19 -0.083

Probeset_3 0.236 Probeset_20 0.197

Probeset_4 -0.185 Probeset_21 0.262

Probeset_5 -0.080 Probeset_22 -0.169

Probeset_6 0.120 Probeset_23 0.185

Probeset_7 -0.071 Probeset_24 0.206

Probeset_8 -0.199 Probeset_25 0.254

Probeset_9 -0.145 Probeset_26 0.132

Probeset_10 -0.091 Probeset_27 -0.034

Probeset_11 -0.075 Probeset_28 -0.131

Probeset_12 0.235 Probeset_29 -0.072

Probeset_13 0.148 Probeset_30 0.159

Probeset_14 0.108 Probeset_31 -0.208

Probeset_15 0.171 Probeset_32 0.264

Probeset_16 0.250 Probeset_33 -0.212

Probeset_17 -0.215 Probeset_34 0.170

Loading matrix of 
training dataset

Predictive score = 0.816 X PC1

Cut-off points:
1/3 quantile: -0.734
2/3 quantile: 0.810
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Summary
• Microarray raw data of 133 BR10. samples were 

preprocessed by normalization and adjusting batch effect.

• Predictive gene probesets were selected using Cox’s 
model fitted by modified covariates of bootstrap samples 
without main effect, and elastic net for variable selection.

• A 34-gene signature separates patients in low predictive 
score group between two treatment arms, and the 
patients in low score group are benefit to chemotherapy.
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