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Case-base sampling

Motivation: Cox regression and absolute risk

e Time matching/risk set sampling (including Cox partial likelihood)
eliminates the baseline hazard from the likelihood expression for the
hazard ratios.

o If, however, the absolute risks are of interest, they have to be
recovered using the semi-parametric Breslow estimator.

@ Alternative approaches for fitting flexible hazard models for
estimating absolute risks, not requiring this two-step approach?

@ There is; it originates from Mantel (1973) and Hanley & Miettinen
(2009).
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Case-base sampling

An alternative framework for survival analysis

o Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

@ This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.

@ Provides an alternative to Kaplan-Meier-based methods for estimating
discrimination statistics (e.g. ROC, AUC, risk reclassification
probabilities) from censored survival data.
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Case-base sampling
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Case-base sampling

Age as the time scale
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Base series
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Case-base sampling

Base series matched by the Framingham score
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Likelihood expression (Saarela & Arjas, 2014)

@ The hazard regression can now be fitted using the conditional
likelihood expression

(t; 6)aNi(0) | MO
=11 11 <)+A(e)> ’

i=1te(0,7]

where N;(t) counts the cases, and M;(t) counts both the case and
base series person-moments contributed by individual /.
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@ The hazard regression can now be fitted using the conditional
likelihood expression

(t; 6)aNi(0) | MO
=11 11 (mw)) ’

i=1te(0,7]

where N;(t) counts the cases, and M;(t) counts both the case and
base series person-moments contributed by individual /.

e This is of logistic regression form with the offset term p;(t)
accounting for the base series sampling mechanism.

@ Generalizes to multinomial regression when competing causes are
present.
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Case-base sampling

Model specification

@ Consider the following specification of the hazard function:

Ai(t; 8) = exp{6o + fi(t, 01) + fr(age at baseline; + t,65)
+ f3(troponin I;, 63)
+ 64 x HDL cholesterol;
+ 05 x non-HDL cholesterol;
+ 0 x treated systolic blood pressure;
+ 07 x untreated systolic blood pressure;
+ fg x smoker;

+ 09 x prevalent diabetes;}.

@ Here fi, f, and f3 are appropriate spline basis functions.
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Fitting the hazard model

@ The likelihood expression does not feature the cumulative hazard, only
the hazard function itself evaluated at a discrete number of points.

@ The hazard model can be fitted using standard logistic regression
procedures.

@ The baseline hazard, and consequently, the absolute risk, is obtained
as part of the model fit.

@ Easy to incorporate multiple time scales and interactions between
time and other covariates.

@ The time effects themselves can be fitted using flexible specifications,
such as regression splines (Hanley & Miettinen, 2009; Saarela &
Hanley, 2014).
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Application: estimation of ROC/AUC from time-to-event data

Discrimination measures

Since the hazard model specification was fully parametric, Bayesian
measures of uncertainty may be calculated for any function of these
parameters.

@ Consequently, we can obtain posterior predictive distributions for
discrimination measures such as ROC curves, areas under the curve
(AUC), or risk reclassification probabilities.

o Overfitting?

@ The procedure works similarly if the risk score has been derived in
another sample.
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Application: estimation of ROC/AUC from time-to-event data

Calculating sensitivity /specificity
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Application: estimation of ROC/AUC from time-to-event data

Calculating sensitivity /specificity

@ Consider for example sensitivity, that is, the probability of the
estimated 10-year risk 7(X; 0) being at least some threshold risk 7*,
given the occurrence of the event during the 10 years, and data D:

I I{W(X;Q)ZW*}W(X; 0)P(dx | D)
Lem(x; 0)P(dx | D)

P(r(X;0) > 7 | N(10) = 1,6, D) =
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Application: estimation of ROC/AUC from time-to-event data

Calculating sensitivity /specificity

@ Consider for example sensitivity, that is, the probability of the
estimated 10-year risk 7(X; 0) being at least some threshold risk 7*,
given the occurrence of the event during the 10 years, and data D:

J Yn(xip)s17(x; ) P(dx | D)

P(r(X;6) 2w | N(10) = 1.6, D) = == s b [ DY

@ The sources of uncertainty here are the unknown parameters 6 of the
hazard regression model, and the unknown predictive distribution
P(X | D) of the prognostic factors.

o If we take P(dx | D) = 327, 16,.(dx), a point estimate is given by

i=1n

?:1 l{ﬂ(xi;é)ZW*}F(Xi; é)

Sy m(xi 0)

Olli Saarela (University of Toronto) Case-base sampling for prognostic modeling Nov 8, 2014 17 / 23



Application: estimation of ROC/AUC from time-to-event data

Parametric ROC curves
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Application: estimation of ROC/AUC from time-to-event data

Kaplan-Meier ROC curves (Heagerty et al. 2000)
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@ The hazard model parameters 6 are drawn from the posterior
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Application: estimation of ROC/AUC from time-to-event data

Posterior predictive distribution for AUC

@ The hazard model parameters 6 are drawn from the posterior
distribution P(df | D) o< L(0)P(d6).

@ The posterior predictive distribution of the prognostic factors may be
approximated by the Bayesian bootstrap (Rubin, 1981).

@ This corresponds to P(dx | D) = Y /1 w;dx (dx), where
(wi, ..., wp) ~ Dirichlet(1,...,1).

@ The ROC curve and corresponding AUC are calculated at each
realization of 6 and (wi,...,w,).
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Application: estimation of ROC/AUC from time-to-event data

Posterior AUCs for the five models
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Application: estimation of ROC/AUC from time-to-event data

Remarks

o Case-base sampling combined with logistic/multinomial regression
provides an alternative to risk set sampling-based semi-parametric
survival analysis methods.

@ This enables easy fitting of smooth-in-time and non-proportional
hazard models with multiple time scales.

@ Similarly, this provides an alternative to Kaplan-Meier-based methods
for estimating discrimination statistics (e.g. ROC, AUC, risk
reclassification probabilities) from censored survival data.

@ Bayesian measures of uncertainty can be obtained for these.

@ Improving the prediction of CVD in healthy populations, beyond the
classic risk factors of CVD, has been challenging.
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