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Abstract

Given arepresentatigh: A — B(H) of a Banach algebra on a Hilbert spaceél, H is said to have the
reduction property as ad-module if every closed invariant subspacebfs complemented by a closed
invariant subspace4 has the total reduction property if for every representationd — B(H), H has
the reduction property.

We show that &C*-algebra has the total reduction property if and only if all its representations are
similar to x-representations. The question of whetheiGilalgebras have this property is the famous
‘similarity problem’ of Kadison.

We conjecture that non-self-adjoint operator algebras with the total reduction property are always
isomorphic toC*-algebras, and prove this result for operator algebras consisting of compact operators.

2000Mathematics subject classificatioprimary 46L05, 46L07.

1. Introduction

A well-established approach to understanding algebraic objects is to consider their
representation theory. The extent to which this approach is successful depends ol
the characteristics of the algebraic object under consideration, and the nature of the
representations chosen.

For instance, finite-dimensional complex representations of finite groups are well-
behaved and lead to a satisfactory classical theory of group representations. One o
the reasons that such representations are tractable is that they enjoy the followinc
reduction property: itr : G — EndV is a representation, then eveB¢invariant
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subspace d¥ is complemented by an invariant subspace. This allows a decomposition
of V into a direct sum of irreducible invariant subspaces.

Atopological situation where representation theory is indispensibleds-asgebra
theory. Here the relevant representations are«thepresentations, and again these
representations enjoy a similar reduction propertyAifs aC*-algebra,r : A —

B(H) is ax-representation and C H is A-invariant, thenV+ is also.4-invariant.
This property is central for the theory @f*-algebras.

In this paper we introduce an analogous property for representations of non-self-
adjoint operator algebras. Throughout the work all subspaces, submodules and suk
algebras will be closed, and all maps will be continuous. By an operator algebra we
mean a Banach algebra isomorphic to a subalgebi(bif) for some Hilbert space
H. If Ais an operator algebra ardl is a left Banach4-module which is isomorphic
to a Hilbert space we say théat is a Hilbertian.A-module. When4d C B(H) is a
subalgebra oBB(H) we take the natural Hilbertiardl-module structure oi.

DEFINITION 1.1. Let.4 be an operator algebra ahtla Hilbertian.A-module. Then,
H is said to have the reduction property if for every closed submoduie H there
is another closed submodufé € H with H =V & W.

DEFINITION 1.2. Let A € B(H) be an operator algebra. H has the reduction
property we say that is a reduction algebra.

If H is a Hilbertian.A-module the invariant subspace latticetbfwill be written
Laty A, or Lat.A when there is no possibility of confusion. The reduction property
says that Lat A is what might be called ‘topologically complemented’.

The reduction property has been investigated by Rosed@gin the context of
operators on a general Banach space, his techniques are similar to the ones used hel
However, for our purposes we need something stronger—the reduction property is
too weak to imply any self-adjoint structure for an operator algebra. To obtain a rich
enough theory we provide two sharpened definitions. WHes an.A-module, we
denote byH™ the n-fold amplification ofH (that is, the left moduled ® C"), and
by H©® the countably infinite amplification dfl.

DEerFINITION 1.3. Let A be an operator algebra amtl be a HilbertianA-module.
We say thaH has the complete reduction property if the amplified modiif&’ has
the reduction property. WheA C B(H) andH has the complete reduction property,
we say thatd is a complete reduction algebra.

DEFINITION 1.4. Let 4 be an operator algebra. We say thatas the total reduction
property if every Hilbertiand-module has the reduction property. For brevity we will
also say that is a total reduction algebra.
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Note that while both the reduction property and the complete reduction property
are tied to a certain representation, the total reduction property is dependent only or
the Banach algebra isomorphism classf If A € B(H) is an operator algebra,
then the total reduction property fgtimplies the complete reduction property, which
in turn implies the reduction property.

A special form of the reduction property is singled out in the literature—a (weakly
closed) operator algebrd < B(H) with the property thatv € Lat.A implies
V1 € LatA is said to be reductivelfl]. All von Neumann algebras have this
property. The main open question related to reductive algebras is the ‘reductive
algebra problem’: are reductive algebras automatically self-adjoint? A degenerate
case of the reduction property occurs whenMat {0, H}. In this caseA is referred
to as a transitive algebrd ]]. It is an open question whether a transitive algebra
A C B(H) must be all ofB(H).

If A is an operator algebra add: A — B(H) is a representation the commutant
of the set{#(a) : a € A} will be written 6(A)’, or A" when there is no danger of
confusion. Note thaH has the reduction property if and only if every submodule of
H is the range of an idempotent operatordh Since the module maps frohh to H
are exactly the operators i/, we call such idempotent operators module projections.

The complete reduction property has the desirable feature of offering a uniform
bound on the norms of the module projections needed to produce all invariant sub-
spaces.

LEMMA 1.5. Let A be an operator algebra, and a Hilbertian .A-module with the
complete reduction property. There exidls> 1 so that for any submodulé C H
there is a module projectiop € A’ of H ontoV with || p|| < M.

ProoF. For a submodul&/ € H, let M(V) denote the infimum of the norms of
the module projections ontd. Suppose that there is a sequefi¢g of submodules
with M(V)) — oo. We may consideV; as embedded into theh component of
H® by & > £ ® §. With this embedding leV = Y ®V, € H™., ThenV is
a submodule oH, and sinceH has the complete reduction property there is a
complementing submoduld € H®™. Let p: H® — V be the corresponding
module projection. LeH; denote the copy oH appearing in theéth coordinate
position and letg; : H®™ — H;, denote theth coordinate projection. Thep, =
g plw : Hi — Vi is a module projection ont®; with ||p|| < | pll. However, by
assumptior pi || > M(V,) — oo. This contradiction establishes the result. [

DEFINITION 1.6. Let A be an operator algebra amtl a Hibertian module for4
with the complete reduction property. The smallglst- 0 such that every submodule
of H is the range of a module projectignwith || p|| < M is called the projection
constant ofH.
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For total reduction algebras the idea of Lemfn& can be extended by treating
more than one representation at once.

LeEmMMA 1.7. Let. A be an operator algebra with the total reduction property. Then
there is an increasing functiolk : R* — R* such that ifé : A — B(H) is
a representation ofA and V C H is a submodule there is a module projection
p:H — Vwith|pl] < K(eID.

ProOOF. TakeC > 0. Suppose that there is a sequeige: A — B(H,)} of
representations witho,|| < C and a sequencg/; € H,} of submodules such that
K (Vi) — oo. Consider the direct sum representationA — B(Y_® H;) given by
@) (&) = (Bi(a)&). Then| 0] < C, and sinceA is a total reduction algebra the
moduleH = Y ® H, has the complete reduction property. Thus there is a module
projectionp € 6(A) ontoV = > ®V,. As before, if we denote bg the projection
from H onto H;, thenp, = q; p|w, is a projection im; (A)" onto V;, with | pi|| < | pll
for all i. This contradiction implies the existence of the function O

2. A cohomological definition of the total reduction property

The definition of the total reduction property can be recast into a cohomological
setting. The cohomological definition is less illuminating to work with, but has the
advantage that it displays the connection between the total reduction property anc
other notions already in the literature.

Foro : A — B(H), a representation of an operator algeltathe spacds(H)
becomes aml-bimodule in the natural way, so we may speak of derivations from
into B(H), and of the cohomology grouk*(A, B(H)) [6].

THEOREM2.1. An operator algebrad has the total reduction property if and only
if H*(A, B(H)) = 0 for every representatiof : A — B(H).

PROOF. Suppose thatl has the total reduction property and that A — B(H)
is a representation. Lét: A — B(H) be a derivation with respect ta
Consider the map : A — B(H @ H) given by

AL o@ 4
9.a|—>[ 0 Q(a)]'

Matrix multiplication verifies that this is a representation 4f and H @ 0 is a
submodule ofH @ H. Since A has the total reduction property, there exists a
complementary submodulé. This subspace must be a closed graph overH) and
hence is of the fornfTn ® n : n € 0 H} for someT € B(H).
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Applying the matrixd(a) to Tn & n gives

[Q(a) 3(3)] [Tn} _ [(Q(a)T +8(a))n} _ [TG(a)ﬂ}
0 o@]Ln 6(@n f@n

by the invariance of/. Thuss(a) = T6(a) — 6(a)T for all a € A, showing thab is
inner andH*(A, B(H)) = 0.

Conversely, supposk*(A, B(H)) = 0 for every representation: A — B(H).
Suppose thad : A — B(H) is a representation ofl andV C H is a submodule
of H. The orthogonal decompositidih = V & V+ gives the matrix form

a; a
o) = [ w a;j

for elements ofd. Let us definé : A — B(H) ands : A — B(H) by

b(a) = [aél ai] and 5(a) = [8 aéz].

If a, b € Awe have

|:a11 a-12:| |:b11 blz] _ |:a11b11 ay1bio + a12b22]
0 adxo 0 b22 0 a22b22

which shows thafl is a representation ofl and that

5(ab) = |:8 ay1b12 -g a12b22]
_la 00 b1, 0 ap||{bu O
=10 au|lo o]0 ol 0 by
= 9(a)s(b) + s(@)d(b).

Thuss is a derivation with respect to the representa@orSinceHl(A, B(H) =0
whereB(H) is now considered as a bimodule ¥iawe haves(a) = 6(a)T — To(a)
for someT e B(H). Writing

T le]
T =
|:T21 T2z

and expanding the identia) = 6(a)T — T4 (a) in components gives, = ay; Ti,—

Ti,82,. Then the subspace
[ o]
n

is ad(A)-invariant complement tv and hencea is a total reduction algebra. [
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This characterisation of total reduction algebras should be compared to the defini-
tion of amenability of Banach algebras. Recall that a Banach algéliseamenable
if H(A, X*) = 0 for all dual Banach4-bimodulesX*. The bimodulesd3(H) which
arise above are in fact dual bimodules, a fact which can be verified by considering
the spacel C(H) of trace-class operators dth. It is well-known thatTC(H) is the
predual to3(H) and we have the canonical inclusio@(H) € B(H)*. It is easily
seen thalf C(H) is a submodule of the dual moduk H )* and that the module action
on B(H) is itself dual to this module action oRiC(H). This gives the following
proposition.

PrOPOSITION2.2. Let A be an amenable operator algebra. Thdrhas the total
reduction property.

3. C*-algebras and the reduction property

We have observed thatf is aC*-algebraana : A — B(H) is ax-representation
then H has the reduction property as attmodule. For none representations the
situation is not so simple.

Let A be an operator algebra. Two representatibns A — B(H) andy
A — B(H) are said to be similar if there is an isomorphiS$n H — H with
f(a) = vS@ = Sty (a)Sforalla € A. In the case whered is aC*-algebra,
we say that4 has the similarity property if every representationfis similar to
a x-representation. An intriguing open question in the theorgbflgebras is the
similarity questior{7, 10]:

QuEsTION 3.1 (Similarity Question)Does everyC*-algebra have the similarity
property?

The following is almost immediate.

LEMMA 3.2. Let A be aC*-algebra with the similarity property. Thed has the
total reduction property.

There are several partial results to the similarity question, most of which can be
found in Pisier's book]0]. Many of these find restrictions on either the algebra or the
module which force the representation to be similar torapresentation. The most
prominent result of the latter type is Haagerup’s result for finitely generated modules
[5, 10].

THEOREM 3.3. Let A be aC*-algebra and) : A — B(H) a representation of4.
If there is a finite seté; } of vectors inH such that the submodule generated{gy
is H, thend is similar to ax-representation.
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In general, it is not known whether the size of the similarity obtained in this result
can be bounded in terms ¢f || alone. Indeed, a simple ultrafilter argument shows
that establishing such a bound is equivalent to solving the similarity probl€m [
However, whenA has the total reduction property the norms of the similarities can
be bounded in terms dfo| using the projection constant function obtained from
Lemmal.7. The proof of this fact is adapted from the proof of the complemented
subspaces theorem which appears3in [

LEMMA 3.4. Let A be aC*-algebra with the total reduction property, and let
0 : A — B(H) be arepresentation which is similar totarepresentation. 1K is the
projection constant function of Lemma7 then there is a similarityd so thatS is a
x-representation and/ S|/ || S| < 128K (||9])2.

PROOF. Let us say that a Hilbertiavd-module H’ is a x-module for A if the
corresponding representation is-aepresentation. Let

a =inf {||SIIS | : Sis a module isomorphism frord onto ax-modulg}.

By assumptior < oo and we may find a-moduleH’ and contractive module isomor-
phismS: H — H’ with ||S|| < 2«. SinceH’ is ax-module the corresponding rep-
resentationd — B(H’) is contractive and the representativn A — B(H)®»B(H")
has||¢’| < [10]| (assuming # 0). ThusH & H’ has the reduction property with
projection constanl < K (||6|)) and consequently for any € R* there is a module
projectionpfromH @ H onto GruS= {§ @ u St : € € H} with || p|| < M. Writing

p in matrix components reveals thathas the form

| 1+RuS -R
P=1,.s1+RuS —uSR

for some module maR : H' — H. Since| p|| < M, it follows that||R|| < M and
InS(L+ RuS| < M.
Now consider the module map: H — H’ & H’ given by

1 1
TE = ESE ® m(us(l—{- RuS)€).

This is a contractive module isomorphism onto some closed submodtde®fH’.
SinceH’ is ax-module forA, H' @ H' is also ax-module and hence any submodule
of H' @ H’ is ax-module. By the definition af, this means that there § € H with
&l = 1 and|| T&| < 2071,

Suppose thalt S5 || < (2Muw)~*. From the second term in the definition Bfwe
see that| T&| > u/8Ma. Since we know that®! > || T&| this is impossible if
we choose: > 16M.
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Thus ifu = 16M + ¢ we must have| S&|| > 2Mu) * = (32M2 + 2Me) . Then
the first term in the definition of gives the inequality

2071 > 271S5 || > (64M? + 4Me) Y,
and hencer < 128M?2. O

This result allows us to pass from finitely generated modules to general modules,
as follows.

ProPOSITION3.5. Let .4 be aC*-algebra with the total reduction property. Then
every representation o is similar to ax-representation.

PrROOF Let 0 : A — B(H) be a representation ofl. From Haagerup’s re-
sult we know that every finitely generated subrepresentatioé if similar to a
x-representation. To pass to the full representation consider tiiecdtnite subsets
of H, and letF denote an ultrafilter omx which contains the filterbase of sets of
the form{x : L 2 X}. For eachr = {&} € A, let H, be the submodule off
generated by&}. Then by Lemma.4there are contractive similariti€s, € B(H,)
with |S. 71| < 128K (||6])]? such that applying, makes |, ax-representation. In
particular, if§, n € A € A, then(S0(@)§&|Sn) = (S£|S6@")n) foralla e A. We
define a new inner product dd by

(& [1new = M (SE[S ).

Routine verification shows that this defines an inner product norml mguivalent
to the original norm, an@ becomes as-representation with respect to this inner
product. O

COROLLARY 3.6. The total reduction property is equivalent to the similarity prop-
erty for C*-algebras.

Combining Propositior2.2 and Corollary3.6 gives a new proof of the known fact
that amenabl€*-algebras have the similarity property.

Corollary 7.14 of L] shows for any Hilbert spacH, that3(H) has the similarity
property. Thud€3(H) always has the total reduction property, and for infinite dimen-
sional H this provides an example of a total reduction algebra which does not have
the approximation property and is not amenaBle [

4. Structure of reduction algebras

We propose the following two conjectures concerning the structure of operator
algebras with either the complete reduction property or the total reduction property.
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CONJECTUREA4.1. Every total reduction algebra is isomorphic tdGx-algebra.

CoNJECTURE4.2. Every weakly closed complete reduction algebra is similar to a
C*-algebra.

The second conjecture can be considered as a non-self-adjoint analogue of the
reductive algebra problem. Note thatdf € B(H) is a total reduction algebra and is
isomorphic to &C*-algebra, CorollanB.6 shows that4 is similar to aC*-algebra. It
is not difficult to construct examples to show that the hypothesis of weak closure is
necessary in Conjecture2.

Any solution to Conjecturé.2must be equivalentto the following procedure.

(i) Use the fact that Lat.4 is topologically complemented to find a similarity
S e B(H) so that Lat4® is orthogonally complemented. That is, renokhwith an
equivalent Hilbert space norm so that under this norm, L&tecomes orthogonally
complemented.

(i) Having reduced to the case where L4t is orthogonally complemented, show
that 45 is self-adjoint.

For, if A is weakly closed and similar to@*-algebra, then certainly the similariy
in step (i) can be found. Moreover, §is such that Lat® is orthogonally comple-
mented, then sincdl = Alg Lat A we see that4® is self-adjoint, and so step (i) can
be established.

The first step can be considered as a module analogue of the complemented suk
spaces theorem from Banach space the@yThis theorem states: if every subspace
of a Banach spac& is complemented theX is isomorphic to a Hilbert space. If
we write LatX for the lattice of subspaces &f, the theorem becomes: if L&tis
topologically complemented, thexican be renormed by an equivalent Hilbert space
norm so that LaX becomes orthogonally complemented. The connection with step (i)
above is substantiated in Lemraa@below, where we emulate the Banach space proof
in a module context.

Once step (i) has been achievdd is a reductive algebra. The reductive algebra
problem demonstrates that step (ii) will not in general be a trivial step. In particular,
if Lat A = {0, H} then step (i) is automatically obtained and we are dealing with a
transitive algebra. To make progress we need to restrict attention to cases where th
reductive and transitive algebra problems cannot cause difficulties.

A theorem of Lomonosov states thatBf € B(H) is a (not-necessarily closed)
algebra of operators with L& = {0, H} andB contains a non-zero compact operator,
thenB contains a compact operator with positive spectral radius. A corollary of this is
that if A € K(H) is an operator algebra of compact operators withAat {0, H},
thenA = KC(H) [11]. This theorem effectively removes the transitive algebra problem
for algebras with non-zero compact operators and allows us to completely understanc
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the structure of complete reduction algebras consisting solely of compact operators.
The remainder of the paper is devoted to establishing the following result.

THEOREMA4.3. Let. A C KC(H) be a complete reduction algebra. Thdris similar
to aC*-algebra.

C*-algebras of compact operators are described by a Wedderburn-like structure
theorem []. If A € K(H) is aC*-algebra of compact operators, then there is a
family of Hilbert spacegV,} indexed by some set and an integer-valued function
A = Ny, so thatH is isometrically isomorphic t§_® V, ® C™ and.A is isometrically
isomorphic to theC*-algebrad * K(V,) ® 1,,.

Considering a non-self-adjoint complete reduction algettra K(H), the next
few results lead up to Theorefm10which will allow us to reduce the problem to the
case whered” contains no proper central projections. From the above description
of C*-algebras of compact operators, this should correspond to the case Wlgere
similar to (V) ® 1, for some Hilbert spac¥ and integen.

If A C IC(H) is an operator algebra with the reduction property, the submodule
‘AH is complemented by som¢ < LatA. ThenAV € AH NV = {0}, so A
annihilatesV. Applying a similarity, we may assume thatH L V. In terms of
showing thatA is similar to aC*-algebra, it is clearly equivalent to show that the
isometrically isomorphic restricted algeb#d s is similar to aC*-algebra. Thus we
may reduce without loss of generality to the case whéke = H. In this case we
say thatA4 acts nondegenerately dth. For the remainder of this paper we assume
that all operator algebras act nondenegerately.

LEMMA 4.4. Let A C B(H) be an operator algebra with the complete reduction
property, and letP be the set of central projections of”. ThenP is bounded.
Moreover, there exists a similarit$ of H which makes all the central projections
self-adjoint.

PROOF. Let M be the projection constant ¢ and suppose € P. ThenpH
is a submodule oH. By Lemmal.5there is a projection € A" with ||q]] < M
andgH = pH. Nowq € A, p € A” and they share the same range space, so
q=pg=qp=p,giving | pll <M.

To show that a similarity can be found which orthogonalises these central pro-
jections, consider the abelian group obtained from the involutive oper@toss
{1—2p: p € P}. This is a bounded abelian group, and so there is a simil&ity
under whichG becomes a unitary group]f However, if(1 — 2p)®is unitary thenps
is self-adjoint. O
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LEMMA 4.5. Let A be an operator algebra. Suppose tHatis a Hilbertian A-
module with the reduction property and thdtH = H. Then¢ € A& forall £ € H.

PROOF. Foreveng e H the spacelé is.A-invariant. The reduction property yields
V e LatA with H = A¢ @ V as.A-modules, giving a decompositign= &, @ &,
into the respective components. We hade = A&, @ &) C Ag, soAg, = 0. We
wish to show that, = 0. Consider the subspaté = {n : An = 0}. Thisis a closed
A-module containing, and using the reduction property thereUse Lat.A with
H = W @ U. Then by the nondegeneracy assumptibr= AH = AW & AU C
AU, implying thatU = H. ThusW = {0} and sc&, = 0. O

COROLLARY 4.6. Let A € B(H) be an operator algebra such thai has the
complete reduction property andH = H. Foranyl < n < oo and any§ € H™
we have: € AV,

PrROOF. It follows from AH = H that ADH®™ = H®™. Then Lemma4.5 gives
the result. O

THEOREM 4.7. Let A be an operator algebra, and suppoge A — B(H) is a
representation of4 such thatH has the complete reduction property. AH = H
thend(A)°* = A”. Hered(A)’* refers to thes-weak closure of (A).

PROOF It is immediate that (A)°* < A”. For the converse, také € .4” and
a sequencé = (&) € H®. We will show that for anye > 0 there isa € A
with |[T®2¢& — a™®¢g|| < e. This will demonstrate that the-strong closure of (A)
containsA”; since theo-weak topology is weaker than thestrong topology, the
result will follow.

Using Corollary4.6 the vector¢ lies in Ag. The reduction property gives a
projection in(A®) onto A¢. SinceT € A”, it follows that T € (A®)”, and
soT™®¢ e A&, Consequently, there e A with | T —a®&| < e. O

COROLLARY 4.8. Let A € B(H) be a nondegenerate operator algebra with the
complete reduction property. Thetl’ = A",

For C*-algebras this is the famous von Neumann double commutant thegfem |
Our proof is a modification of the usu@l-algebra proof.

LEMMA 4.9. Suppose thaB € K(H) is an algebra of compact operators acting
nondegenerately oRl. If Ris an abelian von Neumann algebra commuting vidth
thenR is generated as a weakly closed algebra by its minimal projections.
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PrROOF. SinceR is self-adjoint, it commutes not only witB but also with{b* :
b € B} and hence with th€*-algebra generated Wy, which we writeC*(B). This
is a C*-algebra consisting of compact operators acting nondegeneratety, @o
by the structure theory fo€C*-algebras of compact operators there is a fanhily
of Hilbert spaces and multiplicity functiop — n, such thatC*(B) is unitarily
isomorphic toZiO K(H,) ® 1, . The commutanM = C*(B) may be read off from
thisasM = 3" 1y ® My, = 3" M, . We write M, for the yth summand. The
projections fromM onto M, are central projections dff. Let D be a maximal
abelian self-adjoint subalgebra ® containingR. The maximality ofD implies
that D contains the centre dl, and soD = Z';M(D NnM,), whereDN M, is a
maximal abelian self-adjoint subalgebra Mf,. The maximal abelian self-adjoint
subalgebras o, are isomorphic td>(n,), and soD = Y- £*(n,) = £>(R) for
some index seR. This allows us to think oR as a self-adjoint subalgebra & (2).
Let A be the set of equivalence classegxifinder the relation

w1 =wy = r(w) =r(wy) forall r e R

By this construction we may think dR as a self-adjoint subalgebra &*(A). For
A € A consider the set

P, = {p € R: pisidempotentp(}) = 1}.

Since the projections iR form a complete Boolean algebr®, will possess an
infimum, p, say, which must be given by a characteristic function of a subsat of
containingi. BecauseR is generated by its projections and separates the poimts of
we havep, = 1;,;, and soR = £*(A). The lattice of projections oR is thusP(A),
which is atomic with atoms};. These are exactly the minimal projectionshf O

THEOREM4.10. Supposed € K(H) is a nondegenerate complete reduction alge-
bra. Then the central idempotents df form a complete atomic Boolean algebra.
The atoms are exactly the minimal central projectiongléf Writing { p, } for this set
of minimal idempotents, the algebras = p,.A are closed two-sided ideals gfand
consideringA; as an operator algebra op, H, the bicommutant has no proper
central projections. Finally,4 = Y ® A,.

PrROOF Using Lemma4.4 we may assume that the central projectionsd6fare
self-adjoint. LetR be the abelian von Neumann algebra generated by these central
projections. Lemma.9 shows thatR is generated by its minimal projections. With
{p,} and H, as specified, the nondegeneracy assumption implies Y ® H, and
3" p, = 1 (strong convergence).

Let us write A, for the (possibly non-closed) algebpaA € B(H,). Suppose that
p € A] € B(H,) is a central projection o] for somex € A. Thenpp, is central
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for A”, and 0< pp, < p,.. Sincep;, is an atom in the lattice of central projections of
A, eitherp =0 or p = p,. In either casep is not a proper central projection gf;.

We claim thatA; is a closed ideal ofd. To see thatp, A C A, recall the
duality (H)* = (TC(H))* = B(H), whereTC(H) is the space of trace class
operators orH. With this duality, thes-weak topology or3(H) coincides with the
o (B(H), TC(H))-topology. Suppose then thpta ¢ .A for somea € A. Sincep,a
is compact, by the Hahn-Banach theorem theré is TC(H) with (f, A) = 0 and
(f, p.a) = 1. However, since by Theoreh?7, p,a € A" = A°v there is a netb,}
in Awith b, 25 p,a. Sincef € TC(H), f is o (B(H), TC(H))-continuous (that is,
o-weak-continuous) and we have=9 (f, b,) — (f, p,a) = 1. This contradiction
implies thatp, A € A and thatp, .4 is norm closed (being the range of the projection
p.l4). Sincep, is central,p, A is a two-sided ideal afd.

Let us write > A, for the algebraic direct sum (that is, taking elements with
only finitely many non-zero terms). The norm closureddf A, is Y ® A,. Since
the idempotent$p, } are self-adjoint and mutually orthogonal, we have the isometric
embedding) " A, < A and asA is norm closed this implies thdi’® A, c A.

On the other hand, & p, = 1 the equalitya = )_ p,a holds for alla € A. The
compactness d then implies that — || p,all € co(A) and saA € Y “ A4,. O

This result will allow us to reduce attention to the case wh#teontains no proper
central projections.

The next few lemmas apply to general complete reduction algebras rather than only
those consisting of compact operators. letc B(H) denote a complete reduction
algebra acting on Hilbert spa¢é. If V andW are two submodules d¢f, we consider
the space of module maps fromi to W. We define a relation~ on the set of
submodules oH as follows:V ~» W if and only if there is a hon-zero module map
fromV toW.

LEMMA 4.11. Let A € B(H) be a complete reduction algebra and supp¥geVv,
are submodules dfl with \V, ~~ V;. ThenV; ~ V..

PROOF. We may assume that NV, = {0} by replacingH with H ® C2if necessary
and replacingV; with V; ® e, and V, with V, ® e,. This device also ensures that
V; + V, is closed.

Suppose tha¥; + V,. Consider the subrepresentatiémf .4 onV; & V,. The
elements ob (A)" have the matrix form

b
b21 b22 ’

where eacly; : V; — V; isamodule map. Sinéé, ~~ V; there is a non-zero module
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mapT : V, — Vi. Fori € R, consider the matrix

1 0 ,
|:AT 0i|69(./4).

This is a projection onto GfT with kernel V,, and it is the only projection onto
GrAT of the form given for elements 6f(A)’. However, as. — oo the norm of this
projection goes teo. Then Lemmadl.5gives a contradiction. O

LEMMA 4.12.Let A € B(H) be a complete reduction algebra and denoteBiy
the closed algebra generated byyand . A’. ThenB is a reduction algebra, and the
B-invariant subspaces dfl are exactly the ranges of the central projections4sf

PrOOF. Clearly LatB = Lat.A N Lat.A". Suppose/ € Lat AN LatA". SinceH
has the reduction property as aiamodule, there i8V € LatA with V @ W = H.
The elements ofA’ have the matrix fornj § ;] with respect to this decomposition,
where the asterisks denote the possibly non-zero entries. Lehirighows that in
fact elements ofd’ are of the form[ ; °]. Thus the projectiofi§ 3] lies in A" N A,
andV is the range of a central projection #’. Conversely, the range of any central
projection of A” is clearly in LatB. O

5. Algebras of compact operators

The above results allow us to use an extension of Lomonosov’s lemma due to
Shul'man to show that if4 € K(H) is a complete reduction algebra with no proper
central projections ind” then Lat4 contains irreducible submodules. This gives us
the wedge we need to attack Theoréia

Shul'man’s theorem states that any operator algebra whose radical contains a non
zero compact operator shares a proper invariant subspace with its commajaiio]
put this theorem to use in our context we need only make the following observation.

LEMMA 5.1. Let A C K(H) be a complete reduction algebra. LU&t.A contains
no non-zero irreducible submodules thdncontains only quasinilpotent operators,
and is hence a radical algebra.

ProOOF. Let N C Lat.4 be a maximal chain of submodulesidf ForV € N the
maximality of N shows that the submodule

V_=5paifV': V' e N and V' C V}

is either equal to/ or a maximal submodule &f. Thus if W is a complement t&/_
in V thenW is irreducible. Since there are no non-zero irreducible submodulels of
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it follows thatV_ = V for all V € N. A theorem of RingroseZ, Theorem 3.4] now
gives that all elements o4 are quasinilpotent. O

PrOPOSITIONS.2. Let A C K(H) be a complete reduction algebra with no proper
central projections in4”. ThenH contains a non-zero irreducible submodule.

PrOOF If H contains no non-zero irreducible submodules theis radical, and
so shares a proper invariant subspace wdth From Lemma4.12 this implies the
existence of a proper central projectionAti. O

The next step is to use Lomonosov’s lemma to show that the irreducible represen-
tations of. A behave as they ought to.

LemmA 5.3. Let A € K(H) be an operator algebra with the complete reduction
property, and suppose that, W € LatA. If V is irreducible andT : V — Wis a
non-zero module map, then the rangeak closed andr is an isomorphism onto its
range.

PrROOF. The (maybe non-closed) restriction algebts, is an algebra of compact
operators, such th& has no proper closed submodules. Lomonosov’s lemma implies
that A|y is weakly dense i3(V), and so(A|y) = Cly. Supposel : V — Wis
a non-zero module map. Replacilg with TV we may assume that has dense
range. By Lemmad.11 there is a non-zero module m&: W — V. Then
ST:V — V is a module map, non-zero by the densityTo¥. This means that
0+#£ STe (A|lv) = Cly, and soT is bounded below. ThuEV is closed and is an
isomorphism oV onto its range. O

LEMMA 5.4. Supposed C IC(H) has the complete reduction property. Nete
Lat.4 be irreducible andV € Lat.A be arbitrary. There is a non-zero module map
T : W — V ifand only ifW contains a submodule isomorphicVo

PROOF. Suppose thal : W — V is anon-zero module map. Lemmiallimplies
that there is a non-zero module m8p V — W, which is an isomorphism onto its
range by Lemm&.3.

Conversely, ifV' € W is isomorphic toV, there is a module projection frolV
ontoV’. Composing this projection with the isomorphism frdmto V yields the
required non-zero module map. O

LemmA 5.5. Let A € K(H) be an operator algebra with the complete reduction
property. IfV, W € Lat.A andV is irreducible, theriV + W is closed.
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PrROOF If V NW # {0} thenV N'W = V by irreducibility, andV + W = W,
which is closed.

If VW = {0}, findU € LatA suchthatU & W = H, and letp: H — U
be the projection ontty alongW. ThenT = p|y : V — U is a non-zero module
map, and so, by Lemma.3, T is an isomorphism o¥/ onto its range contained in
U. If V + W is not closed there arte € V,n € W with ||&|| > 1 and|& + || <
T4 pll™ But then|| T @) = P& = pE + Il < [T, whence
1< €] < IT7YNTE)] < 1. This contradiction implies that + W is closed. O

LEMMA 5.6. Let A € K(H) be a operator algebra with the complete reduction
property and suppos¥ < Lat.4 is an irreducible submodule. L& < H be the
closed span of a family of submodulestbfeach isomorphic td/. ThenW is the
direct sum of finitely many submodules isomorphi¥'to

PROOF. Let V; € W be isomorphic tov. We inductively define sequencg¥;}
and{W } of submodules as follows:

If W, = spariVi}i<n # W, then by the definition ofV there is a submodule
Vor1 € W, isomorphic toV and not contained iiV,. SinceV,,; is irreducible, we
haveV,.; "W, = {0}. By Lemmab5.5, the algebraic suridV, 4+ V,,1 is closed and so
Wn + Vn+1 = Wn ® Vn+1-

Using this to define inductively the sequen¢¥s and{W,}, there are two possibil-
ities: eitherW, ; W for all n or W, = W for somen. However, the first case cannot
occur. To see this, observe that by Lomonosov’s lemma the algéhr&ontains a
compact operator with non-zero eigenvalues, and hghcentains an operator with
non-zero eigenvalues. Using the holomorphic functional calculus, there is a non-zero
finite-rank projectionp € A with p|y # 0. SinceV, is isomorphic toV for all i,
we havep|y, # 0 and so there can only be finitely mafly;}. Now by construction
W=W,=>Y7 V. O

LEMMA 5.7. Let A € K(H) be a complete reduction algebra and suppose
contains no central idempotents. Then there exists an irreducible submddale
LatA, and.A is similar to (V) ® 1, for somen € N.

PrOOF. We have already seen that there is an irreducible Lat.A. Let W be
the closed span of all isomorphic copies\6fin Lat.A. From Lemma5.6, W is a
finite direct sum ofn isomorphic copies o¥/. If W # H there isU € Lat.A with
H = W @ U. By definitionU does not contain any isomorphic copiesvaf In this
case the commutapd’ can be expressed in matrix form as

[(Alw)’ 0 }
0 AwJ’
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where the zeros are obtained from Lemnsa3-5.4. Thus the operatof} 3] is a
central projection of4”. This contradiction implies thal/ = H.

This allows us to writeH = Zfin Vi, whereV; = V via module isomorphisms
Ti:Vi > V. WerenormH by

HZ®% ieW=Z||Ti<si>||2.

This renorming effects a similarity dd which exhibits4 as similar toC(V)®1,. O

Theorem4.10and Lemmab.7 show thatA is similar to acy-direct sum of ideals,
each of which is similar t&C(V,) ® 1,, . The only remaining step is to show that the
similarities needed for each ideal gf are uniformly bounded in size, so that they
may be strung together to apply to alldf A modification of Lemmé3.4 provides
just what we need.

LEMMA 5.8. Suppose thatd € K(H) is a complete reduction algebra with no
proper central projections ipd”, and supposé! * has projection constaritl. Then
there is a similaritySon H with ||S||[|S || < 128M2 such thatA4S is self-adjoint.

PrOOF. We know that there is an integen such thatH is the direct sum ofn
mutually isomorphic irreducible submodules. Let us choose one such submodule
V C H, so thatH is isomorphic toV™ as an4-module.

Note that for any integem the submodules df ™ are of the formV ® W where
W C C". In particular, all rankm submodules 0¥/ @™ are isometrically isomorphic
to V™ as A-modules.

Paralleling Lemm&.4, set

a = inf{||S]|||S}| : Sis a module isomorphism betwe¢handV ™},

so there is a contractive module isomorphiSmH — V™ with |S™!|| < 2. For
u € R we consider the graph subspaced® < H @ V™. Observe thaH ¢ V™
is embedded isometrically iH ™ and soH & V™ has the reduction property with
projection constant M.

Now follow the proof of LemmaB.4, replacing H”” with * V™’ and ‘x-module’
with ‘module isometrically isomorphic t&% ™ for somen’ to obtain the estimate
a < 128M2. ]

We may now restate and prove Theoréi

THEOREM5.9. Let A C K(H) be an operator algebra. Thed has the complete
reduction property if and only 4 is similar to aC*-algebra.
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PrROOF. Suppose thatl C K(H) has the complete reduction property.Afdoes
not act nondegenerately, there is a submodlle Lat.A with AH & V = H and
AV = {0}. Applying a similarity we may assume thatH L V. Then A will
be self-adjoint if and only if4| 47 is self-adjoint, so we may assume thdtacts
nondegenerately.

By Theorem4.10, we may assume that there is an orthogonal farhijyof sub-
modules ofH with H = Y"® H,, and A = > A,, whereA; < K(H,) are complete
reduction algebras such that the algeh#ishave no proper central projections. By
Lemmabs.7, for each there is a submodul®¥; < H, and integem, such that
Alv, = K(V,) and A, = K(V,) ® 1, . Moreover, by Lemmd.8 the similarities
S. € B(H;) needed to makel, self-adjoint can be chosen uniformly bounded. The
direct sum similarityS = >"® S, will orthogonaliseA.

Since all self-adjoint operator algebras have the complete reduction property the
converse is immediate. O

COROLLARY 5.10. Let. A € K(H). ThenA is a total reduction algebra if and only
if A is similar to aC*-algebra.

PROOF. Suppose tha#d is a total reduction algebra. Certainly is a complete
reduction algebra so by Theorei9 is similar to aC*-algebra. By the structure
theorem discussed abovd, is thus amenable, and Propositi@r2 completes the
argument. O

Note that the argument here shows that an operator algélrdC(H) is amenable
if and only if it is similar to aC*-algebra. In particular, it follows that an operator in
K(H) generates an amenable algebra if and only if it is similar to a normal operator,
a result due to Willis T4]. More generally, it has recently been shown 4 that a
generalT € B(H) generates an amenable algeltaf and only if T is similar to a
normal operator whose spectrum has connected complement and empty interior (ir
which caseA is similar to aC*-algebra).
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