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Abstract

Given a representation� : A → B.H/ of a Banach algebraA on a Hilbert spaceH , H is said to have the
reduction property as anA-module if every closed invariant subspace ofH is complemented by a closed
invariant subspace;A has the total reduction property if for every representation� : A → B.H/, H has
the reduction property.

We show that aC∗-algebra has the total reduction property if and only if all its representations are
similar to∗-representations. The question of whether allC∗-algebras have this property is the famous
‘similarity problem’ of Kadison.

We conjecture that non-self-adjoint operator algebras with the total reduction property are always
isomorphic toC∗-algebras, and prove this result for operator algebras consisting of compact operators.

2000Mathematics subject classification: primary 46L05, 46L07.

1. Introduction

A well-established approach to understanding algebraic objects is to consider their
representation theory. The extent to which this approach is successful depends on
the characteristics of the algebraic object under consideration, and the nature of the
representations chosen.

For instance, finite-dimensional complex representations of finite groups are well-
behaved and lead to a satisfactory classical theory of group representations. One of
the reasons that such representations are tractable is that they enjoy the following
reduction property: if³ : G → EndV is a representation, then everyG-invariant
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subspace ofV is complemented by an invariant subspace. This allows a decomposition
of V into a direct sum of irreducible invariant subspaces.

A topological situation where representation theory is indispensible is inC∗-algebra
theory. Here the relevant representations are the∗-representations, and again these
representations enjoy a similar reduction property: ifA is a C∗-algebra,³ : A →
B.H/ is a∗-representation andV ⊆ H is A-invariant, thenV⊥ is alsoA-invariant.
This property is central for the theory ofC∗-algebras.

In this paper we introduce an analogous property for representations of non-self-
adjoint operator algebras. Throughout the work all subspaces, submodules and sub-
algebras will be closed, and all maps will be continuous. By an operator algebra we
mean a Banach algebra isomorphic to a subalgebra ofB.H/ for some Hilbert space
H . If A is an operator algebra andH is a left BanachA-module which is isomorphic
to a Hilbert space we say thatH is a HilbertianA-module. WhenA ⊆ B.H/ is a
subalgebra ofB.H/ we take the natural HilbertianA-module structure onH .

DEFINITION 1.1. LetA be an operator algebra andH a HilbertianA-module. Then,
H is said to have the reduction property if for every closed submoduleV ⊆ H there
is another closed submoduleW ⊆ H with H = V ⊕ W.

DEFINITION 1.2. Let A ⊆ B.H/ be an operator algebra. IfH has the reduction
property we say thatA is a reduction algebra.

If H is a HilbertianA-module the invariant subspace lattice ofH will be written
LatH A, or LatA when there is no possibility of confusion. The reduction property
says that LatH A is what might be called ‘topologically complemented’.

The reduction property has been investigated by Rosenoer [12] in the context of
operators on a general Banach space, his techniques are similar to the ones used here.
However, for our purposes we need something stronger—the reduction property is
too weak to imply any self-adjoint structure for an operator algebra. To obtain a rich
enough theory we provide two sharpened definitions. WhenH is anA-module, we
denote byH .n/ then-fold amplification ofH (that is, the left moduleH ⊗ Cn), and
by H .∞/ the countably infinite amplification ofH .

DEFINITION 1.3. Let A be an operator algebra andH be a HilbertianA-module.
We say thatH has the complete reduction property if the amplified moduleH .∞/ has
the reduction property. WhenA ⊆ B.H/ andH has the complete reduction property,
we say thatA is a complete reduction algebra.

DEFINITION 1.4. LetA be an operator algebra. We say thatA has the total reduction
property if every HilbertianA-module has the reduction property. For brevity we will
also say thatA is a total reduction algebra.
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Note that while both the reduction property and the complete reduction property
are tied to a certain representation, the total reduction property is dependent only on
the Banach algebra isomorphism class ofA. If A ⊆ B.H/ is an operator algebra,
then the total reduction property forA implies the complete reduction property, which
in turn implies the reduction property.

A special form of the reduction property is singled out in the literature—a (weakly
closed) operator algebraA ⊆ B.H/ with the property thatV ∈ LatA implies
V⊥ ∈ LatA is said to be reductive [11]. All von Neumann algebras have this
property. The main open question related to reductive algebras is the ‘reductive
algebra problem’: are reductive algebras automatically self-adjoint? A degenerate
case of the reduction property occurs when LatA = {0; H}. In this caseA is referred
to as a transitive algebra [11]. It is an open question whether a transitive algebra
A ⊆ B.H/ must be all ofB.H/.

If A is an operator algebra and� : A → B.H/ is a representation the commutant
of the set{�.a/ : a ∈ A} will be written �.A/′, or A′ when there is no danger of
confusion. Note thatH has the reduction property if and only if every submodule of
H is the range of an idempotent operator inA′. Since the module maps fromH to H
are exactly the operators inA′, we call such idempotent operators module projections.

The complete reduction property has the desirable feature of offering a uniform
bound on the norms of the module projections needed to produce all invariant sub-
spaces.

LEMMA 1.5. LetA be an operator algebra, andH a HilbertianA-module with the
complete reduction property. There existsM ≥ 1 so that for any submoduleV ⊆ H
there is a module projectionp ∈ A′ of H ontoV with ‖p‖ ≤ M .

PROOF. For a submoduleV ⊆ H , let M.V/ denote the infimum of the norms of
the module projections ontoV . Suppose that there is a sequence{Vi } of submodules
with M.Vi / → ∞. We may considerVi as embedded into thei th component of
H .∞/ by ¾ 7→ ¾ ⊗ ei . With this embedding letV = ∑⊕ Vi ⊆ H .∞/. ThenV is
a submodule ofH .∞/, and sinceH has the complete reduction property there is a
complementing submoduleU ⊆ H .∞/. Let p : H .∞/ → V be the corresponding
module projection. LetHi denote the copy ofH appearing in thei th coordinate
position and letqi : H .∞/ → Hi denote thei th coordinate projection. Thenpi =
qi p|Hi : Hi → Vi is a module projection ontoVi with ‖pi ‖ ≤ ‖p‖. However, by
assumption‖pi ‖ ≥ M.Vi / → ∞. This contradiction establishes the result.

DEFINITION 1.6. Let A be an operator algebra andH a Hibertian module forA
with the complete reduction property. The smallestM > 0 such that every submodule
of H is the range of a module projectionp with ‖p‖ ≤ M is called the projection
constant ofH .
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For total reduction algebras the idea of Lemma1.5 can be extended by treating
more than one representation at once.

LEMMA 1.7. LetA be an operator algebra with the total reduction property. Then
there is an increasing functionK : R+ → R+ such that if� : A → B.H/ is
a representation ofA and V ⊆ H is a submodule there is a module projection
p : H → V with ‖p‖ ≤ K .‖�‖/.

PROOF. Take C > 0. Suppose that there is a sequence{�i : A → B.Hi /} of
representations with‖�i ‖ ≤ C and a sequence{Vi ⊆ Hi } of submodules such that
K .Vi / → ∞. Consider the direct sum representation� : A → B(∑⊕ Hi

)
given by

�.a/.¾i / = .�i .a/¾i /. Then‖�‖ ≤ C, and sinceA is a total reduction algebra the
module H = ∑⊕ Hi has the complete reduction property. Thus there is a module
projectionp ∈ �.A/′ onto V = ∑⊕ Vi . As before, if we denote byqi the projection
from H onto Hi , thenpi = qi p|Hi is a projection in�i .A/′ ontoVi , with ‖pi ‖ ≤ ‖p‖
for all i . This contradiction implies the existence of the functionK .

2. A cohomological definition of the total reduction property

The definition of the total reduction property can be recast into a cohomological
setting. The cohomological definition is less illuminating to work with, but has the
advantage that it displays the connection between the total reduction property and
other notions already in the literature.

For � : A → B.H/, a representation of an operator algebraA, the spaceB.H/
becomes anA-bimodule in the natural way, so we may speak of derivations fromA
intoB.H/, and of the cohomology groupH1.A;B.H// [6].

THEOREM2.1. An operator algebraA has the total reduction property if and only
if H1.A;B.H// = 0 for every representation� : A → B.H/.

PROOF. Suppose thatA has the total reduction property and that� : A → B.H/
is a representation. LetŽ : A → B.H/ be a derivation with respect to� .

Consider the map̂� : A → B.H ⊕ H/ given by

�̂ : a 7→
[
�.a/ Ž.a/

0 �.a/

]
:

Matrix multiplication verifies that this is a representation ofA, and H ⊕ 0 is a
submodule ofH ⊕ H . SinceA has the total reduction property, there exists a
complementary submoduleV . This subspace must be a closed graph over 0⊕ H and
hence is of the form{T�⊕ � : � ∈ 0 ⊕ H} for someT ∈ B.H/.
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Applying the matrix�̂ .a/ to T�⊕ � gives
[
�.a/ Ž.a/

0 �.a/

] [
T�
�

]
=

[
.�.a/T + Ž.a//�

�.a/�

]
=

[
T�.a/�
�.a/�

]

by the invariance ofV . ThusŽ.a/ = T�.a/− �.a/T for all a ∈ A, showing thatŽ is
inner andH1.A;B.H// = 0.

Conversely, supposeH1.A;B.H// = 0 for every representation� : A → B.H/.
Suppose that� : A → B.H/ is a representation ofA andV ⊆ H is a submodule
of H . The orthogonal decompositionH = V ⊕ V⊥ gives the matrix form

�.a/ =
[

a11 a12

0 a22

]

for elements ofA. Let us definê� : A → B.H/ andŽ : A → B.H/ by

�̂ .a/ =
[

a11 0
0 a22

]
and Ž.a/ =

[
0 a12

0 0

]
:

If a; b ∈ A we have[
a11 a12

0 a22

][
b11 b12

0 b22

]
=

[
a11b11 a11b12 + a12b22

0 a22b22

]

which shows that̂� is a representation ofA and that

Ž.ab/ =
[
0 a11b12 + a12b22

0 0

]

=
[

a11 0
0 a22

] [
0 b12

0 0

]
+

[
0 a12

0 0

] [
b11 0
0 b22

]

= �̂ .a/Ž.b/+ Ž.a/�̂.b/:

ThusŽ is a derivation with respect to the representation�̂ . SinceH1.A;B.H// = 0
whereB.H/ is now considered as a bimodule via�̂ , we haveŽ.a/ = �̂ .a/T − T �̂ .a/
for someT ∈ B.H/. Writing

T =
[

T11 T12

T21 T22

]

and expanding the identityŽ.a/ = �̂ .a/T −T �̂ .a/ in components givesa12 = a11T12−
T12a22. Then the subspace {[−T12�

�

]
: � ∈ V⊥

}

is a�.A/-invariant complement toV and henceA is a total reduction algebra.
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This characterisation of total reduction algebras should be compared to the defini-
tion of amenability of Banach algebras. Recall that a Banach algebraA is amenable
if H1.A; X∗/ = 0 for all dual BanachA-bimodulesX∗. The bimodulesB.H/ which
arise above are in fact dual bimodules, a fact which can be verified by considering
the spaceTC.H/ of trace-class operators onH . It is well-known thatTC.H/ is the
predual toB.H/ and we have the canonical inclusionTC.H/ ⊆ B.H/∗. It is easily
seen thatTC.H/ is a submodule of the dual moduleB.H/∗ and that the module action
on B.H/ is itself dual to this module action onTC.H/. This gives the following
proposition.

PROPOSITION2.2. LetA be an amenable operator algebra. ThenA has the total
reduction property.

3. C∗-algebras and the reduction property

We have observed that ifA is aC∗-algebra and³ : A → B.H/ is a∗-representation
then H has the reduction property as anA-module. For non-∗ representations the
situation is not so simple.

Let A be an operator algebra. Two representations� : A → B.H/ and :
A → B.H/ are said to be similar if there is an isomorphismS : H → H with
�.a/ =  S.a/ = S−1 .a/S for all a ∈ A. In the case whereA is a C∗-algebra,
we say thatA has the similarity property if every representation ofA is similar to
a ∗-representation. An intriguing open question in the theory ofC∗-algebras is the
similarity question[7, 10]:

QUESTION 3.1 (Similarity Question).Does everyC∗-algebra have the similarity
property?

The following is almost immediate.

LEMMA 3.2. LetA be aC∗-algebra with the similarity property. ThenA has the
total reduction property.

There are several partial results to the similarity question, most of which can be
found in Pisier’s book [10]. Many of these find restrictions on either the algebra or the
module which force the representation to be similar to a∗-representation. The most
prominent result of the latter type is Haagerup’s result for finitely generated modules
[5, 10].

THEOREM 3.3. LetA be aC∗-algebra and� : A → B.H/ a representation ofA.
If there is a finite set{¾i } of vectors inH such that the submodule generated by{¾i }
is H , then� is similar to a∗-representation.
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In general, it is not known whether the size of the similarity obtained in this result
can be bounded in terms of‖�‖ alone. Indeed, a simple ultrafilter argument shows
that establishing such a bound is equivalent to solving the similarity problem [10].
However, whenA has the total reduction property the norms of the similarities can
be bounded in terms of‖�‖ using the projection constant function obtained from
Lemma1.7. The proof of this fact is adapted from the proof of the complemented
subspaces theorem which appears in [3].

LEMMA 3.4. Let A be a C∗-algebra with the total reduction property, and let
� : A → B.H/ be a representation which is similar to a∗-representation. IfK is the
projection constant function of Lemma1.7 then there is a similarityS so that� S is a
∗-representation and‖S‖‖S−1‖ ≤ 128K .‖�‖/2.

PROOF. Let us say that a HilbertianA-module H ′ is a ∗-module forA if the
corresponding representation is a∗-representation. Let

Þ = inf
{‖S‖‖S−1‖ : S is a module isomorphism fromH onto a∗-module

}
:

By assumptionÞ < ∞ and we may find a∗-moduleH ′ and contractive module isomor-
phismS : H → H ′ with ‖S−1‖ ≤ 2Þ. SinceH ′ is a∗-module the corresponding rep-
resentationA → B.H ′/ is contractive and the representation� ′ : A → B.H/⊕B.H ′/
has‖� ′‖ ≤ ‖�‖ (assuming� 6= 0). ThusH ⊕ H ′ has the reduction property with
projection constantM ≤ K .‖�‖/ and consequently for any¼ ∈ R+ there is a module
projectionp from H ⊕ H ′ onto Gr¼S = {¾ ⊕¼S¾ : ¾ ∈ H} with ‖p‖ ≤ M . Writing
p in matrix components reveals thatp has the form

p =
[

1 + R¼S −R
¼S.1 + R¼S/ −¼SR

]

for some module mapR : H ′ → H . Since‖p‖ ≤ M , it follows that‖R‖ ≤ M and
‖¼S.1 + R¼S/‖ ≤ M .

Now consider the module mapT : H → H ′ ⊕ H ′ given by

T¾ = 1

2
S¾ ⊕ 1

2M
.¼S.1 + R¼S/¾/:

This is a contractive module isomorphism onto some closed submodule ofH ′ ⊕ H ′.
SinceH ′ is a∗-module forA, H ′ ⊕ H ′ is also a∗-module and hence any submodule
of H ′ ⊕ H ′ is a∗-module. By the definition ofÞ, this means that there is¾0 ∈ H with
‖¾0‖ = 1 and‖T¾0‖ ≤ 2Þ−1.

Suppose that‖S¾0‖ ≤ .2M¼/−1. From the second term in the definition ofT we
see that‖T¾0‖ ≥ ¼=8MÞ. Since we know that 2Þ−1 ≥ ‖T¾0‖ this is impossible if
we choose¼ > 16M .
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Thus if¼ = 16M +ž we must have‖S¾0‖ > .2M¼/−1 = .32M2 + 2Mž/−1. Then
the first term in the definition ofT gives the inequality

2Þ−1 ≥ 2−1‖S¾0‖ > .64M2 + 4Mž/
−1
;

and henceÞ ≤ 128M2.

This result allows us to pass from finitely generated modules to general modules,
as follows.

PROPOSITION3.5. LetA be aC∗-algebra with the total reduction property. Then
every representation ofA is similar to a∗-representation.

PROOF. Let � : A → B.H/ be a representation ofA. From Haagerup’s re-
sult we know that every finitely generated subrepresentation of� is similar to a
∗-representation. To pass to the full representation consider the set3 of finite subsets
of H , and letF denote an ultrafilter on3 which contains the filterbase of sets of
the form {½ : ½ ⊇ ½0}. For each½ = {¾i } ∈ 3, let H½ be the submodule ofH
generated by{¾i }. Then by Lemma3.4 there are contractive similaritiesS½ ∈ B.H½/

with ‖S½
−1‖ ≤ 128[K .‖�‖/]2 such that applyingS½ makes� |H½

a∗-representation. In
particular, if¾; � ∈ ½ ∈ 3, then.S½�.a/¾ |S½�/ = .S½¾ |S½�.a∗/�/ for all a ∈ A. We
define a new inner product onH by

.¾ |�/new = lim
F
.S½¾ |S½�/:

Routine verification shows that this defines an inner product norm onH equivalent
to the original norm, and� becomes a∗-representation with respect to this inner
product.

COROLLARY 3.6. The total reduction property is equivalent to the similarity prop-
erty for C∗-algebras.

Combining Proposition2.2and Corollary3.6gives a new proof of the known fact
that amenableC∗-algebras have the similarity property.

Corollary 7.14 of [10] shows for any Hilbert spaceH , thatB.H/ has the similarity
property. ThusB.H/ always has the total reduction property, and for infinite dimen-
sional H this provides an example of a total reduction algebra which does not have
the approximation property and is not amenable [8].

4. Structure of reduction algebras

We propose the following two conjectures concerning the structure of operator
algebras with either the complete reduction property or the total reduction property.
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CONJECTURE4.1. Every total reduction algebra is isomorphic to aC∗-algebra.

CONJECTURE4.2. Every weakly closed complete reduction algebra is similar to a
C∗-algebra.

The second conjecture can be considered as a non-self-adjoint analogue of the
reductive algebra problem. Note that ifA ⊆ B.H/ is a total reduction algebra and is
isomorphic to aC∗-algebra, Corollary3.6shows thatA is similar to aC∗-algebra. It
is not difficult to construct examples to show that the hypothesis of weak closure is
necessary in Conjecture4.2.

Any solution to Conjecture4.2must be equivalent to the following procedure.

(i) Use the fact that LatH A is topologically complemented to find a similarity
S ∈ B.H/ so that LatAS is orthogonally complemented. That is, renormH with an
equivalent Hilbert space norm so that under this norm LatH A becomes orthogonally
complemented.

(ii) Having reduced to the case where LatAS is orthogonally complemented, show
thatAS is self-adjoint.

For, if A is weakly closed and similar to aC∗-algebra, then certainly the similarityS
in step (i) can be found. Moreover, ifS is such that LatAS is orthogonally comple-
mented, then sinceA = Alg LatA we see thatAS is self-adjoint, and so step (ii) can
be established.

The first step can be considered as a module analogue of the complemented sub-
spaces theorem from Banach space theory [3]. This theorem states: if every subspace
of a Banach spaceX is complemented thenX is isomorphic to a Hilbert space. If
we write LatX for the lattice of subspaces ofX, the theorem becomes: if LatX is
topologically complemented, thenX can be renormed by an equivalent Hilbert space
norm so that LatX becomes orthogonally complemented. The connection with step (i)
above is substantiated in Lemma5.8below, where we emulate the Banach space proof
in a module context.

Once step (i) has been achievedAS is a reductive algebra. The reductive algebra
problem demonstrates that step (ii) will not in general be a trivial step. In particular,
if Lat A = {0; H} then step (i) is automatically obtained and we are dealing with a
transitive algebra. To make progress we need to restrict attention to cases where the
reductive and transitive algebra problems cannot cause difficulties.

A theorem of Lomonosov states that ifB ⊆ B.H/ is a (not-necessarily closed)
algebra of operators with LatB = {0; H} andB contains a non-zero compact operator,
thenB contains a compact operator with positive spectral radius. A corollary of this is
that if A ⊆ K.H/ is an operator algebra of compact operators with LatA = {0; H},
thenA = K.H/ [11]. This theorem effectively removes the transitive algebra problem
for algebras with non-zero compact operators and allows us to completely understand
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the structure of complete reduction algebras consisting solely of compact operators.
The remainder of the paper is devoted to establishing the following result.

THEOREM4.3. LetA ⊆ K.H/ be a complete reduction algebra. ThenA is similar
to a C∗-algebra.

C∗-algebras of compact operators are described by a Wedderburn-like structure
theorem [1]. If A ⊆ K.H/ is a C∗-algebra of compact operators, then there is a
family of Hilbert spaces{V½} indexed by some set3 and an integer-valued function
½ 7→ n½, so thatH is isometrically isomorphic to

∑⊕ V½ ⊗Cn½ andA is isometrically
isomorphic to theC∗-algebra

∑c0 K.V½/⊗ 1n½ .
Considering a non-self-adjoint complete reduction algebraA ⊆ K.H/, the next

few results lead up to Theorem4.10which will allow us to reduce the problem to the
case whereA′′ contains no proper central projections. From the above description
of C∗-algebras of compact operators, this should correspond to the case whereA is
similar toK.V/⊗ 1n for some Hilbert spaceV and integern.

If A ⊆ K.H/ is an operator algebra with the reduction property, the submodule
AH is complemented by someV ∈ LatA. ThenAV ⊆ AH ∩ V = {0}, soA
annihilatesV . Applying a similarity, we may assume thatAH ⊥ V . In terms of
showing thatA is similar to aC∗-algebra, it is clearly equivalent to show that the
isometrically isomorphic restricted algebraA|AH is similar to aC∗-algebra. Thus we
may reduce without loss of generality to the case whereAH = H . In this case we
say thatA acts nondegenerately onH . For the remainder of this paper we assume
that all operator algebras act nondenegerately.

LEMMA 4.4. LetA ⊆ B.H/ be an operator algebra with the complete reduction
property, and letP be the set of central projections ofA′′. Then P is bounded.
Moreover, there exists a similarityS of H which makes all the central projections
self-adjoint.

PROOF. Let M be the projection constant ofH and supposep ∈ P. Then pH
is a submodule ofH . By Lemma1.5 there is a projectionq ∈ A′ with ‖q‖ ≤ M
and q H = pH. Now q ∈ A′, p ∈ A′′ and they share the same range space, so
q = pq = qp = p, giving ‖p‖ ≤ M .

To show that a similarity can be found which orthogonalises these central pro-
jections, consider the abelian group obtained from the involutive operatorsG =
{1 − 2p : p ∈ P}. This is a bounded abelian group, and so there is a similarityS
under whichG becomes a unitary group [9]. However, if.1− 2p/S is unitary thenpS

is self-adjoint.
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LEMMA 4.5. Let A be an operator algebra. Suppose thatH is a HilbertianA-
module with the reduction property and thatAH = H . Then¾ ∈ A¾ for all ¾ ∈ H .

PROOF. For every¾ ∈ H the spaceA¾ isA-invariant. The reduction property yields
V ∈ LatA with H = A¾ ⊕ V asA-modules, giving a decomposition¾ = ¾1 ⊕ ¾2

into the respective components. We haveA¾ = A.¾1 ⊕ ¾2/ ⊆ A¾ , soA¾2 = 0. We
wish to show that¾2 = 0. Consider the subspaceW = {� : A� = 0}. This is a closed
A-module containing¾2 and using the reduction property there isU ∈ LatA with
H = W ⊕ U . Then by the nondegeneracy assumptionH = AH = AW ⊕ AU ⊆
AU , implying thatU = H . ThusW = {0} and so¾2 = 0.

COROLLARY 4.6. Let A ⊆ B.H/ be an operator algebra such thatH has the
complete reduction property andAH = H . For any1 ≤ n ≤ ∞ and any¾ ∈ H .n/

we have¾ ∈ A.n/¾ .

PROOF. It follows from AH = H that A.n/H .n/ = H .n/. Then Lemma4.5 gives
the result.

THEOREM 4.7. Let A be an operator algebra, and suppose� : A → B.H/ is a
representation ofA such thatH has the complete reduction property. IfAH = H
then�.A/¦w = A′′. Here�.A/¦w refers to the¦ -weak closure of�.A/.

PROOF. It is immediate that�.A/¦w ⊆ A′′. For the converse, takeT ∈ A′′ and
a sequence¾ = .¾i / ∈ H .∞/. We will show that for anyž > 0 there isa ∈ A
with ‖T .∞/¾ − a.∞/¾‖ < ž. This will demonstrate that the¦ -strong closure of�.A/
containsA′′; since the¦ -weak topology is weaker than the¦ -strong topology, the
result will follow.

Using Corollary4.6 the vector¾ lies in A.∞/¾ . The reduction property gives a
projection in.A.∞//′ ontoA.∞/¾ . SinceT ∈ A′′, it follows thatT .∞/ ∈ .A.∞//′′, and
soT .∞/¾ ∈ A.∞/¾ . Consequently, there isa ∈ A with ‖T .∞/¾ − a.∞/¾‖ < ž.

COROLLARY 4.8. Let A ⊆ B.H/ be a nondegenerate operator algebra with the
complete reduction property. ThenA′′ = A¦w.

For C∗-algebras this is the famous von Neumann double commutant theorem [1].
Our proof is a modification of the usualC∗-algebra proof.

LEMMA 4.9. Suppose thatB ⊆ K.H/ is an algebra of compact operators acting
nondegenerately onH . If R is an abelian von Neumann algebra commuting withB,
thenR is generated as a weakly closed algebra by its minimal projections.
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PROOF. Since R is self-adjoint, it commutes not only withB but also with{b∗ :
b ∈ B} and hence with theC∗-algebra generated byB, which we writeC∗.B/. This
is a C∗-algebra consisting of compact operators acting nondegenerately onH , so
by the structure theory forC∗-algebras of compact operators there is a familyH


of Hilbert spaces and multiplicity function
 7→ n
 such thatC∗.B/ is unitarily
isomorphic to

∑c0



K.H
 /⊗ 1n
 . The commutantM = C∗.B/ may be read off from

this asM = ∑`∞



1H

⊗ Mn


∼= ∑`∞



Mn
 . We write M
 for the
 th summand. The
projections fromM onto M
 are central projections ofM . Let D be a maximal
abelian self-adjoint subalgebra ofM containingR. The maximality ofD implies
that D contains the centre ofM , and soD = ∑`∞



.D ∩ M
 /, whereD ∩ M
 is a

maximal abelian self-adjoint subalgebra ofM
 . The maximal abelian self-adjoint
subalgebras ofM
 are isomorphic tò∞.n
 /, and soD ∼= ∑`∞

`∞.n
 / ∼= `∞.�/ for
some index set�. This allows us to think ofR as a self-adjoint subalgebra of`∞.�/.
Let3 be the set of equivalence classes of� under the relation

!1 ≡ !2 ⇐⇒ r .!1/ = r .!2/ for all r ∈ R.

By this construction we may think ofR as a self-adjoint subalgebra of`∞.3/. For
½ ∈ 3 consider the set

P½ = {p ∈ R : p is idempotent; p.½/ = 1}:
Since the projections inR form a complete Boolean algebra,P½ will possess an
infimum, p½ say, which must be given by a characteristic function of a subset of3

containing½. BecauseR is generated by its projections and separates the points of3,
we havep½ = 1{½}, and soR = `∞.3/. The lattice of projections ofR is thusP.3/,
which is atomic with atoms 1{½}. These are exactly the minimal projections ofR.

THEOREM4.10. SupposeA ⊆ K.H/ is a nondegenerate complete reduction alge-
bra. Then the central idempotents ofA′′ form a complete atomic Boolean algebra.
The atoms are exactly the minimal central projections ofA′′. Writing {p½} for this set
of minimal idempotents, the algebrasA½ = p½A are closed two-sided ideals ofA and
consideringA½ as an operator algebra onp½H , the bicommutantA′′

½ has no proper
central projections. Finally,A ∼= ∑c0 A½.

PROOF. Using Lemma4.4 we may assume that the central projections ofA′′ are
self-adjoint. LetR be the abelian von Neumann algebra generated by these central
projections. Lemma4.9 shows thatR is generated by its minimal projections. With
{p½} and H½ as specified, the nondegeneracy assumption impliesH = ∑⊕ H½ and∑

p½ = 1 (strong convergence).
Let us writeA½ for the (possibly non-closed) algebrap½A ⊆ B.H½/. Suppose that

p ∈ A′′
½ ⊆ B.H½/ is a central projection ofA′′

½ for some½ ∈ 3. Then pp½ is central
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for A′′, and 0≤ pp½ ≤ p½. Sincep½ is an atom in the lattice of central projections of
A, eitherp = 0 or p = p½. In either case,p is not a proper central projection ofA′′

½.
We claim thatA½ is a closed ideal ofA. To see thatp½A ⊆ A, recall the

duality K.H/∗∗ = .TC.H//∗ = B.H/, whereTC.H/ is the space of trace class
operators onH . With this duality, the¦ -weak topology onB.H/ coincides with the
¦.B.H/;TC.H//-topology. Suppose then thatp½a 6∈ A for somea ∈ A. Sincep½a
is compact, by the Hahn-Banach theorem there isf ∈ TC.H/ with 〈 f;A〉 = 0 and
〈 f; p½a〉 = 1. However, since by Theorem4.7, p½a ∈ A′′ = A¦w, there is a net{b¼}
in A with b¼

¦w−→ p½a. Since f ∈ TC.H/, f is ¦.B.H/;TC.H//-continuous (that is,
¦ -weak-continuous) and we have 0= 〈 f; b¼〉 → 〈 f; p½a〉 = 1. This contradiction
implies thatp½A ⊆ A and thatp½A is norm closed (being the range of the projection
p½|A). Sincep½ is central,p½A is a two-sided ideal ofA.

Let us write
∑c00 A½ for the algebraic direct sum (that is, taking elements with

only finitely many non-zero terms). The norm closure of
∑c00 A½ is

∑c0 A½. Since
the idempotents{p½} are self-adjoint and mutually orthogonal, we have the isometric
embedding

∑c00 A½ ⊆ A and asA is norm closed this implies that
∑c0 A½ ⊆ A.

On the other hand, as
∑

p½ = 1 the equalitya = ∑
p½a holds for alla ∈ A. The

compactness ofa then implies that½ 7→ ‖p½a‖ ∈ c0.3/ and soA ⊆ ∑c0 A½.

This result will allow us to reduce attention to the case whereA′′ contains no proper
central projections.

The next few lemmas apply to general complete reduction algebras rather than only
those consisting of compact operators. LetA ⊆ B.H/ denote a complete reduction
algebra acting on Hilbert spaceH . If V andW are two submodules ofH , we consider
the space of module maps fromV to W. We define a relation on the set of
submodules ofH as follows: V  W if and only if there is a non-zero module map
from V to W.

LEMMA 4.11. LetA ⊆ B.H/ be a complete reduction algebra and supposeV1;V2

are submodules ofH with V2 V1. ThenV1 V2.

PROOF. We may assume thatV1∩V2 = {0} by replacingH with H ⊗C2 if necessary
and replacingV1 with V1 ⊗ e1 and V2 with V2 ⊗ e2. This device also ensures that
V1 + V2 is closed.

Suppose thatV1 6 V2. Consider the subrepresentation� of A on V1 ⊕ V2. The
elements of�.A/′ have the matrix form

[
b11 0
b21 b22

]
;

where eachbi j : Vj → Vi is a module map. SinceV2 V1 there is a non-zero module



310 James A. Gifford [14]

mapT : V2 → V1. For½ ∈ R+, consider the matrix
[

1 0
½T 0

]
∈ �.A/′:

This is a projection onto Gr½T with kernel V2, and it is the only projection onto
Gr½T of the form given for elements of�.A/′. However, as½ → ∞ the norm of this
projection goes to∞. Then Lemma1.5gives a contradiction.

LEMMA 4.12. Let A ⊆ B.H/ be a complete reduction algebra and denote byB
the closed algebra generated byA andA′. ThenB is a reduction algebra, and the
B-invariant subspaces ofH are exactly the ranges of the central projections ofA′′.

PROOF. Clearly LatB = LatA ∩ LatA′. SupposeV ∈ LatA ∩ LatA′. SinceH
has the reduction property as anA-module, there isW ∈ LatA with V ⊕ W = H .
The elements ofA′ have the matrix form[ ∗ ∗

0 ∗ ] with respect to this decomposition,
where the asterisks denote the possibly non-zero entries. Lemma4.11shows that in
fact elements ofA′ are of the form

[ ∗ 0
0 ∗

]
. Thus the projection

[
1 0
0 0

]
lies inA′′ ∩ A′,

andV is the range of a central projection inA′′. Conversely, the range of any central
projection ofA′′ is clearly in LatB.

5. Algebras of compact operators

The above results allow us to use an extension of Lomonosov’s lemma due to
Shul’man to show that ifA ⊆ K.H/ is a complete reduction algebra with no proper
central projections inA′′ then LatA contains irreducible submodules. This gives us
the wedge we need to attack Theorem4.3.

Shul’man’s theorem states that any operator algebra whose radical contains a non-
zero compact operator shares a proper invariant subspace with its commutant [13]. To
put this theorem to use in our context we need only make the following observation.

LEMMA 5.1. LetA ⊆ K.H/ be a complete reduction algebra. IfLatA contains
no non-zero irreducible submodules thenA contains only quasinilpotent operators,
and is hence a radical algebra.

PROOF. Let N ⊆ LatA be a maximal chain of submodules ofH . For V ∈ N the
maximality of N shows that the submodule

V− = span{V ′ : V ′ ∈ N and V ′ ⊂ V}
is either equal toV or a maximal submodule ofV . Thus if W is a complement toV−
in V thenW is irreducible. Since there are no non-zero irreducible submodules ofH
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it follows that V− = V for all V ∈ N. A theorem of Ringrose [2, Theorem 3.4] now
gives that all elements ofA are quasinilpotent.

PROPOSITION5.2. LetA ⊆ K.H/ be a complete reduction algebra with no proper
central projections inA′′. ThenH contains a non-zero irreducible submodule.

PROOF. If H contains no non-zero irreducible submodules thenA is radical, and
so shares a proper invariant subspace withA′. From Lemma4.12 this implies the
existence of a proper central projection inA′′.

The next step is to use Lomonosov’s lemma to show that the irreducible represen-
tations ofA behave as they ought to.

LEMMA 5.3. LetA ⊆ K.H/ be an operator algebra with the complete reduction
property, and suppose thatV;W ∈ LatA. If V is irreducible andT : V → W is a
non-zero module map, then the range ofT is closed andT is an isomorphism onto its
range.

PROOF. The (maybe non-closed) restriction algebraA|V is an algebra of compact
operators, such thatV has no proper closed submodules. Lomonosov’s lemma implies
thatA|V is weakly dense inB.V/, and so.A|V/

′ = C1V . SupposeT : V → W is
a non-zero module map. ReplacingW with T V we may assume thatT has dense
range. By Lemma4.11 there is a non-zero module mapS : W → V . Then
ST : V → V is a module map, non-zero by the density ofT V. This means that
0 6= ST ∈ .A|V/

′ = C1V , and soT is bounded below. ThusT V is closed andT is an
isomorphism ofV onto its range.

LEMMA 5.4. SupposeA ⊆ K.H/ has the complete reduction property. LetV ∈
LatA be irreducible andW ∈ LatA be arbitrary. There is a non-zero module map
T : W → V if and only ifW contains a submodule isomorphic toV .

PROOF. Suppose thatT : W → V is a non-zero module map. Lemma4.11implies
that there is a non-zero module mapS : V → W, which is an isomorphism onto its
range by Lemma5.3.

Conversely, ifV ′ ⊆ W is isomorphic toV , there is a module projection fromW
onto V ′. Composing this projection with the isomorphism fromV ′ to V yields the
required non-zero module map.

LEMMA 5.5. LetA ⊆ K.H/ be an operator algebra with the complete reduction
property. IfV;W ∈ LatA andV is irreducible, thenV + W is closed.
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PROOF. If V ∩ W 6= {0} then V ∩ W = V by irreducibility, andV + W = W,
which is closed.

If V ∩ W = {0}, find U ∈ LatA such thatU ⊕ W = H , and let p : H → U
be the projection ontoU alongW. ThenT = p|V : V → U is a non-zero module
map, and so, by Lemma5.3, T is an isomorphism ofV onto its range contained in
U . If V + W is not closed there are¾ ∈ V; � ∈ W with ‖¾‖ > 1 and‖¾ + �‖ <
‖T−1‖−1‖p‖−1. But then‖T.¾/‖ = ‖p.¾/‖ = ‖p.¾ + �/‖ < ‖T−1‖−1, whence
1< ‖¾‖ ≤ ‖T−1‖‖T.¾/‖ < 1. This contradiction implies thatV + W is closed.

LEMMA 5.6. Let A ⊆ K.H/ be a operator algebra with the complete reduction
property and supposeV ∈ LatA is an irreducible submodule. LetW ⊆ H be the
closed span of a family of submodules ofH each isomorphic toV . ThenW is the
direct sum of finitely many submodules isomorphic toV .

PROOF. Let V1 ⊆ W be isomorphic toV . We inductively define sequences{Vi }
and{Wi } of submodules as follows:

If Wn = span{Vi }i ≤n 6= W, then by the definition ofW there is a submodule
Vn+1 ⊆ W, isomorphic toV and not contained inWn. SinceVn+1 is irreducible, we
haveVn+1 ∩ Wn = {0}. By Lemma5.5, the algebraic sumWn + Vn+1 is closed and so
Wn + Vn+1 = Wn ⊕ Vn+1.

Using this to define inductively the sequences{Vi } and{Wi }, there are two possibil-
ities: eitherWn $ W for all n or Wn = W for somen. However, the first case cannot
occur. To see this, observe that by Lomonosov’s lemma the algebraA|V contains a
compact operator with non-zero eigenvalues, and henceA contains an operator with
non-zero eigenvalues. Using the holomorphic functional calculus, there is a non-zero
finite-rank projectionp ∈ A with p|V 6= 0. SinceVi is isomorphic toV for all i ,
we havep|Vi 6= 0 and so there can only be finitely many{Vi }. Now by construction
W = Wn = ∑⊕

i ≤n Vi .

LEMMA 5.7. Let A ⊆ K.H/ be a complete reduction algebra and supposeA′′

contains no central idempotents. Then there exists an irreducible submoduleV ∈
LatA, andA is similar toK.V/⊗ 1n for somen ∈ N.

PROOF. We have already seen that there is an irreducibleV ∈ LatA. Let W be
the closed span of all isomorphic copies ofV in LatA. From Lemma5.6, W is a
finite direct sum ofn isomorphic copies ofV . If W 6= H there isU ∈ LatA with
H = W ⊕ U . By definitionU does not contain any isomorphic copies ofV . In this
case the commutantA′ can be expressed in matrix form as

[
.A|W/

′ 0
0 .A|U /′

]
;
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where the zeros are obtained from Lemmas5.3–5.4. Thus the operator
[

1 0
0 0

]
is a

central projection ofA′′. This contradiction implies thatW = H .
This allows us to writeH = ∑⊕

i ≤n Vi , whereVi
∼= V via module isomorphisms

Ti : Vi → V . We renormH by

∥∥∥∑⊕
¾i

∥∥∥2

new
=

∑
‖Ti .¾i /‖2:

This renorming effects a similarity onH which exhibitsA as similar toK.V/⊗1n.

Theorem4.10and Lemma5.7show thatA is similar to ac0-direct sum of ideals,
each of which is similar toK.V½/⊗ 1n½ . The only remaining step is to show that the
similarities needed for each ideal ofA are uniformly bounded in size, so that they
may be strung together to apply to all ofA. A modification of Lemma3.4 provides
just what we need.

LEMMA 5.8. Suppose thatA ⊆ K.H/ is a complete reduction algebra with no
proper central projections inA′′, and supposeH .∞/ has projection constantM . Then
there is a similarityS on H with ‖S‖‖S−1‖ ≤ 128M2 such thatAS is self-adjoint.

PROOF. We know that there is an integerm such thatH is the direct sum ofm
mutually isomorphic irreducible submodules. Let us choose one such submodule
V ⊆ H , so thatH is isomorphic toV .m/ as anA-module.

Note that for any integern the submodules ofV .n/ are of the formV ⊗ W where
W ⊆ Cn. In particular, all rankm submodules ofV .2m/ are isometrically isomorphic
to V .m/ asA-modules.

Paralleling Lemma3.4, set

Þ = inf {‖S‖‖S−1‖ : S is a module isomorphism betweenH andV .m/};

so there is a contractive module isomorphismS : H → V .m/ with ‖S−1‖ ≤ 2Þ. For
¼ ∈ R+ we consider the graph subspace Gr¼S ⊆ H ⊕ V .m/. Observe thatH ⊕ V .m/

is embedded isometrically inH .m+1/ and soH ⊕ V .m/ has the reduction property with
projection constant≤ M .

Now follow the proof of Lemma3.4, replacing ‘H ′’ with ‘ V .m/’ and ‘∗-module’
with ‘module isometrically isomorphic toV .n/ for somen’ to obtain the estimate
Þ ≤ 128M2.

We may now restate and prove Theorem4.3.

THEOREM 5.9. LetA ⊆ K.H/ be an operator algebra. ThenA has the complete
reduction property if and only ifA is similar to aC∗-algebra.
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PROOF. Suppose thatA ⊆ K.H/ has the complete reduction property. IfA does
not act nondegenerately, there is a submoduleV ∈ LatA with AH ⊕ V = H and
AV = {0}. Applying a similarity we may assume thatAH ⊥ V . ThenA will
be self-adjoint if and only ifA|AH is self-adjoint, so we may assume thatA acts
nondegenerately.

By Theorem4.10, we may assume that there is an orthogonal familyH½ of sub-
modules ofH with H = ∑⊕ H½, andA = ∑c0 A½, whereA½ ⊆ K.H½/ are complete
reduction algebras such that the algebrasA′′

½ have no proper central projections. By
Lemma 5.7, for each½ there is a submoduleV½ ⊆ H½ and integern½ such that
A½|V½ = K.V½/ andA½

∼= K.V½/ ⊗ 1n½ . Moreover, by Lemma5.8 the similarities
S½ ∈ B.H½/ needed to makeA½ self-adjoint can be chosen uniformly bounded. The
direct sum similarityS = ∑⊕ S½ will orthogonaliseA.

Since all self-adjoint operator algebras have the complete reduction property the
converse is immediate.

COROLLARY 5.10. LetA ⊆ K.H/. ThenA is a total reduction algebra if and only
if A is similar to aC∗-algebra.

PROOF. Suppose thatA is a total reduction algebra. CertainlyA is a complete
reduction algebra so by Theorem5.9 is similar to aC∗-algebra. By the structure
theorem discussed above,A is thus amenable, and Proposition2.2 completes the
argument.

Note that the argument here shows that an operator algebraA ⊆ K.H/ is amenable
if and only if it is similar to aC∗-algebra. In particular, it follows that an operator in
K.H/ generates an amenable algebra if and only if it is similar to a normal operator,
a result due to Willis [14]. More generally, it has recently been shown in [4] that a
generalT ∈ B.H/ generates an amenable algebraA if and only if T is similar to a
normal operator whose spectrum has connected complement and empty interior (in
which caseA is similar to aC∗-algebra).
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