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What we do

We propose a new static empirical marriage matching function (MMF):
the Log Odds MMF

The Log Odds MMF encompasses:
Choo-Siow frictionless transferable utility MMF (CS)

The CS with frictional transfers.

The Dagsvik Manziel non-transferable utility MMF.

A subclass of the Chiappori, Salanie and Weiss MMF (CSW).

marriage matching with peer effects.

Properties of this Log Odds MMF are presented.

Existence and uniqueness proof of the marriage distribution are
provided.

Comparative statistics are derived.



The CS Benchmark

Consider a society with I, i = 1, .., I, types of men and J, j = 1, .. J, types
of women.

Let m and f be the population vectors of men and women respectively.

Let θ be a vector of parameters.

A marriage matching function (MMF) is an I× J matrix valued function
µ(m, f ; θ) whose typical element is µij, the number type i men married to
type j women.



The CS Benchmark(1)

Building on the seminal papers of Becker (1973, 1974), Choo and Siow
(2006; CS) developed a static frictionless transferable utility.

Let the utility a male g of type i will get from marriage with a woman of
type j, j = 0, .., J be:

Uijg = ũij − τij + εijg (1)

ũij is the systematic gross return to a male of type i marrying a female of
type j.

τij is the transfer made by the man to his wife of type j.

uij = ũij − τij a systematic net component common to all (i, j) matches

εijg is an idiosyncratic component which is man specific.

εijg i.i.d. random variable distributed according to the Gumbel distribution.

Similarly, the utility which a woman k of type j who chooses to marry a
type i man, i = 0, .., I, is:

Vijk = ṽij + τij + εijk. (2)



The CS Benchmark(2)

Now, let extend the CS framework by assuming that we have multiple
type of relationships r (ex: Cohabitation vs marriage)

Let the utility of male g of type i who matches a female of type j in a
relationship r be:

Ur
ijg = ũr

ij − τr
ij + εr

ijg (3)

Let a man who remains unmatched matched a type 0 woman and
τr

i0 = 0.

Individual g will choose according to:

Uig = max
j,r
{Ui0g, Ua

i1g, ..., Ua
ijg, ..., Ua

iJg, Ub
i0g, ..., Ub

ijg, ..., Ub
iJg}.

Let (µr
ij)

d be the number of (r, i, j) matches demanded by i,

(µi0)
d be the number of unmatched i type men.



The CS Benchmark(3)

Following the well known McFadden result, we have:

(µr
ij)

d

mi
= P(Ur

ijg −Ur′
ikg ≥ 0, k = 1, ..., J; r′ = a, b), (4)

where mi denotes the number of men of type i.
From above, we obtain a quasi-demand equation by type i men for
(r, i, j) relationships.

ln
(µr

ij)
d

(µi0)d = ũr
ij − ũi0 − τr

ij, (5)



The CS Benchmark(4)

The quasi-supply equation of type j women for (r, i, j) relationships is
given by:

ln
(µr

ij)
s

(µ0j)s = ṽr
ij − ṽ0j + τr

ij. (6)

The matching market clears when, given equilibrium transfers τr
ij, we

have for all (r, i, j):
(µr

ij)
d = (µr

ij)
s = µr

ij. (7)

Substituting (7) into equations (5) and (6) we get the following MMF:

ln
µr

ij
√

µi0µ0j
= πr

ij ∀ (r, i, j) (8)

where πr
ij = ũr

ij − ũi0 + ṽr
ij − ṽ0j. (called the the gains to marriage)



The CS Benchmark(4)

An equilibrium of the CS matching model can be defined as a vector of
single-hood µ ≡ (µ10, ..., µI0, µ01, ..., µ0J)

′ that verifies:
The CS MMF.

µr
ij = µ1/2

i0 µ1/2
0j eπr

ij for r ∈ {a, b}. (9)

The population constraints.

J

∑
j=1

µa
ij +

J

∑
j=1

µb
ij + µi0 = mi, 1 ≤ i ≤ I (10)

I

∑
i=1

µa
ij +

I

∑
i=1

µb
ij + µ0j = fj, 1 ≤ j ≤ J (11)

µ0j, µi0 > 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.



The CS Benchmark(5)

In others terms, an equilibrium of the CS matching model is the solution
of the following quadratic system of equations:

J

∑
j=1

βiβI+j(e
πa

ij + eπb
ij ) + β2

i = mi, 1 ≤ i ≤ I

I

∑
i=1

βiβI+j(e
πa

ij + eπb
ij ) + β2

I+j = fj, 1 ≤ j ≤ J

βi, βI+j > 0, 1 ≤ j ≤ J, 1 ≤ i ≤ I.

where βi =
√

µi0 and βI+j =
√

µ0j



The CS Benchmark(6)

Using a variational approach Decker et al (2013) showed that for any
admissible (m, f ; θ), µ exists and is unique.

Galichon and Salanié (2013) showed also the existence and the
uniqueness using an alternative approach.



Properties of the CS MMF

The CS is just identified.

The CS MMF fits any observed marriage distribution.

It obeys constant returns to scale in population vectors (Graham, 2013)

The log odds of the number of (r, i, j) relationships relative to the
number of (r′, i, j) relationships is independent of the sex ratio, mi/fj

ln
µb

ij

µa
ij

=
πb

ij − πa
ij

2
(12)

Independence is a very strong assumption and unlikely to hold every two
types of relationships.

Arcidiacono et al (2012, ABM) shows that it does not hold for sexual versus
non-sexual boy girl relationships in high schools.
Mourifié and Siow (2014, in progress) shows that it does not hold for cohabitation
versus marriage.

Could we find a wider class of Matching model that can rationalize such
a dependence?



Survey on the related literature
We can distinguish two main directions in the subsequent literature to the CS
MMF.

1 One branch relaxes the specification of the idiosyncratic component εr
ijg.

The net systematic gains from matching, ur
ij = ũr

ij − τr
ij and vr

ij = ṽr
ij − τr

ij,
from CS is retained.

The transfer is still used to clear the marriage market.

Chiappori, Salanie and Wiess (2012; CSW) allows the variance of εr
ijg to differ

by gender and type and obtains

ln
µr

ij

(µi0)
1−λij (µ0j)

λij
= πr

ij(λij) ∀ (r, i, j) (13)

where λij =
σmi

σmi+σfj
.

Graham (2013) provides a wide set of comparative statistics for a special
case of CSW i.e. λij = λ.

Galichon and Salanié (2012, GS) further generalizes the distributions of
idiosyncratic utilities.

Chiappori and Salanie (2014) provides an excellent state of the art survey of
the above and related models.

2 The second branch studies other behavioral specifications for the net
systematic return from marriage, ur

ij and vr
ij



Survey on the related literature (1)

We can distinguish two main directions in the subsequent literature to the CS
MMF.

1 One branch relaxes the specification of the idiosyncratic component εr
ijg.

2 The second branch studies other behavioral specifications for the net
systematic return from marriage, ur

ij and vr
ij

Dagsvik (2000) assumes that transfers are not available to clear the marriage
market i.e. τr

ij = 0

He assumes that the idiosyncratic payoff of man g of type i marrying
woman k of type j, εr

ijgk, is distributed i.i.d. Gumbel.

He uses the deferred acceptance algorithm to solve for a matching
equilibrium and obtain the following non-transferable utility MMF for large
marriage markets:

ln
µr

ij

µi0µ0j
= πij ∀ (r, i, j) (14)

Manziel (2012) shows that (14) obtains under less restrictive assumptions
about the distribution of εr

ijgk. Call (14) the DM MMF.



Survey on the related literature (2)

We can distinguish two main directions in the subsequent literature to the CS
MMF.

1 One branch relaxes the specification of the idiosyncratic component εr
ijg.

2 The second branch studies other behavioral specifications for the net
systematic return from marriage, ur

ij and vr
ij

The DM MMF also fits any observed marriage distribution.

Unlike CS, it obeys increasing return to scale in population vectors.

When there is more than one type of relationship, the log odds of the
numbers of different types of relationships is independent of the sex
ratio, for all the model surveyed i.e. The CS, CSW and DM MMF.



Log Odds MMF

So far all the models (i.e. CS, CSW, DM MMF) can be written as follows:

ln
µr

ij

(µi0)λr (µ0j)
βr

= πr
ij ∀ (r, i, j) (15)

λr, βr > 0

with
λr = λr′ = βr = βr′ for models with non transferable utility i.e. DM MMF

λr = λr′ ; βr = βr′ and λr + βr = 1 for model with transferable utility i.e. CS,
CSW.

Call (25) the Log Odds MMF.

Notice that when λr 6= λr′ or βr 6= βr′ we have

ln
µr

ij

µr′
ij
= (λr − λr′ ) ln(µi0) + (βr − βr′ ) ln(µ0j) + πr

ij − πr′
ij ∀ (r, i, j).



Log Odds MMF (1)

ln
µr

ij

µr′
ij
= (λr − λr′ ) ln(µi0) + (βr − βr′ ) ln(µ0j) + πr

ij − πr′
ij ∀ (r, i, j)

mi/fj −→ ln µ0j; ln µi0 −→ ln
µr

ij

µr′
ij

Therefore, the Log Odds MMF relaxes the strong independence property
imposed by all previous surveyed MMF.

Does an equilibrium matching distribution of the Log Odds MMF exist?
is it unique?

Could we rationalize the reduced form Log Odds MMF with some
economic structural matching models?



Log Odds MMF (2)

As shown previously, an equilibrium of the CS matching model is the
solution of the following system of equations:

µi0 +
J

∑
j=1

µλa
i0 µ

βa
0j eπa

ij +
J

∑
j=1

µλb
i0 µ

βb
0j eπb

ij = mi, for 1 ≤ i ≤ I, (16)

µ0j +
I

∑
i=1

µλa
i0 µ

βa
0j eπa

ij +
I

∑
i=1

µλb
i0 µ

βb
0j eπb

ij = fj, for 1 ≤ j ≤ J. (17)

If λr and βr are rational numbers, this system is equivalent to a
polynomial system of equations.

Could we write this system as a F.O.C of a variational problem? It seems
not true in general.

The only situation where we were able to do that is the case where
λr = λr′ ; βr = βr′ .

As discussed previously, this case is not very interesting since it imposes
”independence”.



Log Odds MMF (3)

However, let us propose an alternative strategy.

let consider the following mapping g : (R∗+)
I+J → (R∗+)

I+J

gi(µ; θ) = µi0 +
J

∑
j=1

µλa
i0 µ

βa
0j eπa

ij +
J

∑
j=1

µλb
i0 µ

βb
0j eπb

ij , for 1 ≤ i ≤ I, (18)

gj+I(µ; θ) = µ0j +
I

∑
i=1

µλa
i0 µ

βa
0j eπa

ij +
I

∑
i=1

µλb
i0 µ

βb
0j eπb

ij , for 1 ≤ j ≤ J. (19)



Log Odds MMF (4)

Hadamard’s Theorem (Krantz and Park (2003, Theorem 6.2.8 p 126))

Let M1 and M2 be smooth, connected N-dimensional manifolds and let
f : M1 → M2 be a C1 function if

(1) f is proper,

(2) the Jacobian of f vanishes nowhere,

(3) M2 is simply connected,

then f is a homeomorphism.



Log Odds MMF (5)

Let see if our mapping g verifies those conditions.

There are many ways to verify that g is proper.

A continuous function between topological spaces is called proper if the
inverse images of compact subsets are compact.

An easy way is to use the following lemma

Lemma (Krantz and Park (2003, p 125))

Let U and V be connected open sets in RI+J, g: U→ V is a proper mapping
if and only if whenever {xj} ⊆ U satisfies xj → ∂U then g(xj)→ ∂V.

Does the Jacobian of g vanish nowhere?



Log Odds MMF (6)

Let write

µλr
i0 µ

βr
0j eπr

ij = eλrlnµi0+βrlnµ0j+πr
ij , (20)

≡ eδr
ij (21)

Let Jg(µ) be the Jacobian of g.

After a simple derivation we can show that Jg(µ) takes the following
form:

Jg(µ) =

(
(Jg)11(µ) (Jg)12(µ)
(Jg)21(µ) (Jg)22(µ)

)
with



Log Odds MMF (7)

(Jg)11(µ) =
1 + ∑J

j=1

[
λa
µ10

eδa
1j + λb

µ10
eδb

1j
]
· · · 0

...
. . .

...

0 · · · 1 + ∑J
j=1

[
λa
µI0

eδa
Ij + λb

µI0
eδb

Ij
]


(Jg)21(µ) =


λa
µ10

eδa
11 + λb

µ10
eδb

11 · · · λa
µI0

eδa
I1 + λb

µI0
eδb

I1

...
. . .

...
λa
µ10

eδa
1J + λb

µ10
eδb

1J · · · λa
µI0

eδa
IJ + λb

µI0
eδb

IJ

,



Log Odds MMF (8)

(Jg)12(µ) =


βa
µ01

eδa
11 +

βb
µ01

eδb
11 · · · βa

µ0J
eδa

1J +
βb
µ0J

eδb
1J

...
. . .

...
βa
µ01

eδa
I1 +

βb
µ01

eδb
I1 · · · βa

µ0J
eδa

IJ +
βb
µ0J

eδb
IJ

,

(Jg)22(µ) =
1 + ∑I

i=1

[
βa
µ01

eδa
i1 +

βb
µ01

eδb
i1

]
· · · 0

...
. . .

...

0 · · · 1 + ∑I
i=1

[
βa
µ0J

eδa
iJ +

βb
µ0J

eδb
iJ

]
.





Log Odds MMF (9)

Let us denote every element of Jg(µ), Jk,l with 1 ≤ k, l ≤ I + J.

We can remark that |Jll| > ∑I+J
k 6=l |Jkl| for l = 1, ..., I + J.

So , Jg(µ) is a column diagonally dominant matrix or diagonally
dominant in the sense of McKenzie (1960) far all µ > 0.

Thus, Jg(µ), for all µ > 0, is a non-singular matrix. (Proof see McKenzie
(1960).

Then, our mapping g is an homeomorphism.

Therefore, the system of equation (18) admits a unique solution.

We can easily check that the solution is economically relevant in the
sense that 0 < µeq < (m′, f ′)′.



Log Odds MMF : Existence and Uniqueness

Existence and Uniqueness of the equilibrium matching

For every fixed matrix of relationship gains and coefficients βr; λr > 0 i.e.
θ ∈ π× (0, ∞)2, the equilibrium matching of the log Odds MMF model exists
and is unique.



CS with frictional transfers (CSFT), Mourifié and Siow (2014)

Let introduce an extended version of the CS model, by allowing frictions.

Let the utility of male g of type i who matches a female of type j in a
relationship r be:

Ur
ijg = ũr

ij − αrτr
ij + εr

ijg (22)

Similarly, the utility of a woman, is:

Vr
ijk = ṽr

ij + τr
ij + εr

ijk. (23)

male pays αrτr
ij in utility to his partner for the relationship.

males are assumed to be always payers and women receivers, so τr
ij ≥ 0.

αr ≥ 1, so that women value the transfer less than what it costs the men.



CSFT

Using again McFadden result, we can write the men and women
quasi-demand and supply and clears the matching market using the transfer.
We get the following MMF

ln
µr

ij

(µi0)
1− αr

1+αr (µ0j)
αr

1+αr
=

πr
ij

1 + αr
∀ (r, i, j) (24)

where πr
ij = ũr

ij − ũi0 + αr(ṽr
ij − ṽ0j)

Let Call (24) the CSFT MM and λr =
αr

1+αr
.

Then, CSFT MMF is a particular case the Log Odds MMF.

We can remark that

ln
µr′

ij

µr
ij
= (λr − λr′ ) ln

µ0j

µi0
+ πr

ij − πr′
ij ∀ (r, i, j)

CSFT MMF is different from CS, CSW, DM MMF in the sense that
λr 6= λr′ ; βr 6= βr′ . However we still have λr + βr = 1



CSFT (1)

Far all the models (i.e. CS, CSW, CSFT MMF) that used the transfers to
clear the market can be written as follows:

ln
µr

ij

(µi0)λr (µ0j)
βr

= πr
ij ∀ (r, i, j) (25)

λr, βr > 0

with λr + βr = 1.

In the DM MMF we have λr = βr = 1.

Let introduce an extended version of the CS model which allows
presence of peer effects.

Our model of multinomial choice with peer effects is standard and
follows Blume, et. al. (2001)

What is new is our application to two sided matching.



Choo-Siow with peer effect (CSPE)

Let the utility of male g of type i who matches a female of type j in a
relationship r be:

Ur
ijg = ũr

ij + φr ln µr
ij − τr

ij + εr
ijg, where (26)

ũr
ij + φr ln µr

ij: Systematic gross return to a male of type i matching to a
female of type j in relationship r.

φr: Coefficient of peer effect for relationship r, 1 ≥ φr ≥ 0.

µr
ij: Equilibrium number of (r, i, j) relationships.

ũi0 + φ0 ln µ0
i0 is the systematic payoff that type i men get from remaining

unmatched, 1 ≥ φ0 ≥ 0.

We allow the peer effect to differ by relationship.

For example, unmarried individuals spend more time with their unmarried
friends than married individuals with their married friends.

There is no apriori reason to rank φ0 versus φr.



CSPE

Similarly, the utility of a woman, is: male g of type i who matches a
female of type j in a relationship r be:

Vr
ijk = ṽr

ij + Φr ln µr
ij + τr

ij + εr
ijk, (27)

Using again McFadden result, we can write the men and women
quasi-demand and supply and clears the matching market using the
transfers. We get the following MMF

ln µr
ij =

1− φ0

2− φr −Φr ln µi0 +
1−Φ0

2− φr −Φr ln µ0j +
πr

ij

2− φr −Φr (28)

where πr
ij = ũr

ij − ũi0 + ṽr
ij − ṽ0j.

Call (28), the CSPE MMF



CSPE (1)

With the CSPE MMF we no longer have necessarily λr + βr = 1.

When there is no peer effect or all the peer effect coefficients are the
same,

φ0 = Φ0 = φr = Φr

we recover the CS MMF

When
1− φ0

2− φr −Φr =
1−Φ0

2− φr −Φr = 1

we recover the DM MMF



Log Odds MMF: Properties

Let us summarize the different models and some of their properties.

Models and restrictions on λr and βr

Model λr βr Restrictions
Log Odds MMF λr βr λr ≥ 0, βr ≥ 0
CS 1

2
1
2 λr = βr = 1

2
DM 1 1 λr = βr = 1
CSW λr 1-λr λr = λr′ > 0
CSFT αr

1+αr
1

1+αr λr + βr = 1, 1 > λr > 0

CSPE 1−φ0

2−φr−Φr
1−Φ0

2−φr−Φr λr, βr ≥ 0, λr

λr′ =
βr

βr′



Log Odds MMF : Comparative statics

Unlike the Variational approach this methodology does not provide us
intuitions about some comparative statics.

Following Graham (2013), let us propose a fixed point representation of
the equilibrium of the log Odds MMF.

The log Odds MMF ca be written as follows: for all (i, j) pairs:

µr
ij

µi0
= exp

[
πr

ij + (λr − 1)lnµi0 + βrµ0j

]
≡ ηr

ij for r ∈ {a, b},(29)

µr
ij

µ0j
= exp

[
πr

ij + λrlnµi0 + (βr − 1)µ0j

]
≡ ζr

ij for r ∈ {a, b}.(30)



Log Odds MMF : Comparative statics (1)

Manipulating the population constraints (10), (11) we have the
following:

µi0 =
mi

1 + ∑J
j=1

[
ηa

ij + ηb
ij

] ≡ Bi0, 1 ≤ i ≤ I (31)

µ0j =
fj

1 + ∑I
i=1

[
ζa

ij + ζb
ij

] ≡ B0j, 1 ≤ j ≤ J. (32)

Let B(µ; m, f , θ) ≡ (B10(.), ..., BI0(.), B01(.), ..., B0J(.))′.

For a fixed θ we have shown that the (I + J) vector µ of unmatched is a
solution to (I + J) vector of implicit functions

µ− B(µ; m, f , θ) = 0. (33)

Now, let J(µ) = II+J −5µB(µ; m, f , θ) with5µB(µ; m, f , θ) =
∂B(µ;m,f ,θ)

∂µ′

be the (I + J)× (I + J) Jacobian matrix associated with (33).



Log Odds MMF : Comparative statics (2)

To derive the different comparative statics, we generalize the Graham
(2013) approach and then show the following results.

1 J(µeq) = U(µeq)H(µeq)U(µeq)−1 where U(µeq) is a diagonal matrix and
H(µeq) a matrix with non-negative elements when λr ≤ 1 and βr ≤ 1

H(µeq) is a row stochastic matrix (a matrix with non-negative elements where the
rows sum to one) whenever λr + βr = 1

2 H(µeq) is row diagonally dominant if

1 max(βb − λb, βa − λa) < mini∈I

( 1−ρm
i

ρm
i

)
;

2 min(βb − λb, βa − λa) > −maxj∈J

( 1−ρ
f
j

ρ
f
j

)
;

where ρm
i is the rate of matched men of type i and ρ

f
j is the rate of matched

women of type j.

3 Therefore, we can show that H−1 has the following sign structure

H−1(µeq) =

+
... −

. . . . . .

−
... +

.



Log Odds MMF : Comparative statics (3)

the sign structure of H−1 is obtained because:
1 The Schur complements of the H(µ) upper I× I and lower J× J diagonal

blocks are SH11 = H22 −H21(H11)
−1H12 and SH22 = H11 −H12(H22)

−1H21.

2 H row diagonally dominant⇒ the two Schur complement are also
diagonally dominant. See Theorem 1 of Carlson and Markham (1979 p 249).

3 SH11 and SH22 are also Z-matrices (i.e., members of the class of real matrices
with nonpositive off-diagonal elements).

4 Then, SH11 and SH22 are M-matrices =⇒ SH−1
11 = 0 and SH−1

22 = 0. see
Theorem 4.3 of Fiedler and Ptak (1962).

By applying the implicit function theorem to the equation (33) we have:
1 ∂µ

∂mi
= J(µ)−1 ∂B

∂mi
for 1 ≤ i ≤ I

2 ∂µ
∂fj

= J(µ)−1 ∂B
∂fj

for all 1 ≤ j ≤ J



Log Odds MMF : Comparative statics (4)

Comparative Statics (1)

Let µ be the equilibrium matching distribution of the log Odds MMF model.
If the coefficients βr and λr respect the restrictions

1 0 < βr; λr ≤ 1 for r ∈ {a, b};
2 max(βb − λb, βa − λa) < mini∈I

(
1−ρm

i
ρm

i

)
;

3 min(βb − λb, βa − λa) > −maxj∈J

( 1−ρ
f
j

ρ
f
j

)
;

Type-specific elasticities of single-hood.
The following inequalities hold in the neighbourhood of µeq:

mi
µk0

∂µk0
∂mi
≥


1

m∗i
mk
m∗k

∑J
j=1

[λaµa
kj+λbµb

kj][βaµa
kj+βbµb

kj]

f ∗j
> 0 if k 6= i

mi
m∗i

[1 + 1
m∗i

∑J
j=1

[λaµa
ij+λbµb

ij][βaµa
ij+βbµb

ij]

f ∗j
] > 1 if k = i,

1 ≤ k ≤ I.

fj
µ0k

∂µ0k
∂fj
≥


1
f ∗j

fk
f ∗k

∑I
i=1

[λaµa
ik+λbµb

ik ][βaµa
ik+βbµb

ik ]
m∗i

> 0 if k 6= j

fj
f ∗j
[1 + 1

f ∗j
∑I

i=1
[λaµa

ij+λbµb
ij][βaµa

ij+βbµb
ij]

m∗i
] > 1 if k = j,

1 ≤ k ≤ J,



Log Odds MMF : Comparative statics (5)

Comparative Statics (2)

Type-specific elasticities of single-hood.
The following inequalities hold in the neighbourhood of µeq:

mi
µ0j

∂µ0j

∂mi
≤ −

[λaµa
ij + λbµb

ij]

m∗i f ∗j
mi < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

fj
µi0

∂µi0
∂fj
≤ −

[βaµa
ij + βbµb

ij]

m∗i f ∗j
fj < 0, for 1 ≤ i ≤ I and 1 ≤ j ≤ J,

where

m∗i ≡ mi −
J

∑
j=1

[(1− λa)µ
a
ij + (1− λb)µ

b
ij], for 1 ≤ i ≤ I,

f ∗j ≡ fj −
I

∑
i=1

[(1− βa)µ
a
ij + (1− βb)µ

b
ij], for 1 ≤ j ≤ J.



Log Odds MMF : Comparative statics (6)

We can derive comparative statistics for ln µr
kl

µr′
kl

.

For λr > λr′ and βr > βr′ we have

1
∂mi

ln
(µr

kl
µr′

kl

)
> 0

1
∂fj

ln
(µr

kl
µr′

kl

)
> 0



Log Odds MMF : Return to scale

One important question is to know under which conditions on λr and βr
the Log Odds MMF admit constant (increasing or decreasing) return to
scale?

In other terms, holding the type distributions of men and women fixed,
does increasing market size has an effect on the probability of matching?

We can show

I

∑
i=1

U(µ)−1 ∂µ

∂mi
mi +

J

∑
j=1

U(µ)−1 ∂µ

∂fj
fj =

I

∑
i=1

[H(µ)−1]·i +
J

∑
j=1

[H(µ)−1]·(I+j).

Whenever λr + βr = 1, H(µ) is a row stochastic matrix⇒ the row of the
H(µ)−1 matrix sum to one⇒ CRS.

Our intuition is whenever λr + βr > 1 ( λr + βr < 1) we have increasing
(decreasing) return to scale.

However, we have not be able to show that yet? any suggestions ?



Concluion

We propose a new static empirical marriage matching function (MMF):
the Log Odds MMF

The Log Odds MMF encompasses CS, CSW, CSFT, CSPE, DM MMF

Properties of this Log Odds MMF are presented.

Existence and uniqueness proof of the marriage distribution are
provided.

Comparative statistics are derived.
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