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L Physics motivation

m Microscopic model <+ emerging macroscopic structures.

m Macroscopic phases — microscopic interfaces

m Approach: Microscopic modelling of the interface itself.
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LP sics motivation

LE.‘(amplc 1: Elasticity

m Crystals are macroscopic objects, with ordered arrangements of
atoms or molecules in microscopic scale

m Mechanical model of a crystal: little balls connected by springs,
where heat causes the jiggling

m Configuration: snapshot of the atoms’ positions at a given time.



with and without disorder

m In thermal equilibrium, the jigglings explore samples of a
probability measure on the configurations. This is the Gibbs
measure:

Prob(Configuration)  exp(—/ Energy of Configuration),

where 8 = 1/temperature > 0.

m Moving every atom in the same direction the same amount does
not change the energy, and hence the probability, of the
configuration (shift-invariance).

m If Hook’s law holds, the elastic energy between two atoms with
displacements x, y is given by c¢(x — y)? (the force F needed to
extend or compress a spring by some distance |x — y| is
proportional to that distance).

m Then the measure on the atoms’ configurations is
multi-dimensional Gaussian.
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LP sics motivation

L Recap-Gaussian Measure

1D Gaussian random variables

m Recall: A standard 1D Gaussian random variable X has
distribution given by the density

exp(—2/2)

dx.
\2m

P(X € [x,x +dx]) =



Gaussian random variables in R”

m If If (x,y) is an inner product in R”, then

(2m) ™" exp (<x2x>>

is the density of an associated multidimensional Gaussian.

m This is the same as taking
n
>
j=1

where {e;} is an orthonormal basis and {z;} are independent 1D
Gaussians.
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Physics motivation

m Example 2: Effective interface models
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ctive interface models

m The interface for the Ising model - simplest description of
ferromagnetism

m The spontaneous magnetization on cooling down the substance
below a critical temperature, the so-called Curie temperature.

m The Ising model on a domain 2 C Z¢ with free boundary
condition, at inverse temperature 3 = 1/7 > 0 and external field
h € R, is given by the following Gibbs measure on spin
configurations (0,),eq € {+1}%

exp( Z axoy+h20x>

xX,yEQ xEN
[x—y[=1

Ponp(o) == Zons

where P is the uniform distribution on {41}



LE. ample 2: Effective i ace models

m Assume d =2 and Q = [0, N] x [0, N].

m Spin configuration o = {0y }ce(0,... N} x{0,....N} > SPINS
oy € {—1,1}

++
+ +

m Goal: Modelling and analysis of the interface phase boundary
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LDimcnsion d=1

m Interface — transition region that separates different phases

m A, ={-n-n+1,....,n—1,n}, ON,={-n—1,n+1}
m Height Variables (configurations) ¢; € R,i € A,

m Boundary condition 0, such that
¢; =0, when i € JA,,.

m The energy H(¢) := Zf;lln V(¢i — ¢i_1), with V(s) = s* for
Hooke’s law.
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1

LDimcnsion d=1

m The finite volume Gibbs measure

V?xn(qbfna"'vgblv"'vqbn) - : exp( ﬂH(d)))dd)An =

An
n+1 n
ZO exp( ﬂz — ¢i—1) )Hd¢i7
where f = 1/T >0, ¢_p—1 = ¢p+1 = 0and
n+1 n
z8, = /Rzn+| CXP(—ﬁi_Z_:n(Qﬁi — $i-1)?) iHndéi,

is a multidimensional centered Gaussian measure.

m We can replace the 0-boundary condition in 1/2” by a ¥-boundary

condition in V}(’n with ¢_,_1 :=V_p—1, dnt1 := Up41-
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LGcncralizatinn to dimensiond > 2

m Replace the discrete interval {—n,—n+1,...,1,2,...,n}bya
discrete box

An = {_n)_n+17"'717"‘7n_ 17n}d’
with boundary
ONy == {i € Z\ A, : Jj € A, with |i — j| = 1}

m The energy H(¢) := Zl\/elAn‘ué)A,, V(¢i — ¢;), where V(s) = s>
and ¢; = 0 fori € OA,,. ]

m The corresponding finite volume Gibbs measure on R is given
by

I
v, (0) == —exp(—pH(9)) [ [ do.

Z
An lGAn

It is a Gaussian measure, called the Gaussian Free Field (GFF).
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LGcncralizatinn to dimensiond > 2

For GFF

mIfx,yeA,
cov 1/9\" (¢Xa ¢y) = GAn (xa y)a

where G, (x,y) is the Green’s function, that is, the expected
number of visits to y of a simple random walk started from x
killed when it exits A,,.

m GFF appears in many physical systems; two-dimensional GFF
has close connections to Schramm-Loewner Evolution (SLE).

m Random, fractal curve in 2 C C simply connected.

m Introduced by Oded Schramm as a candidate for the scaling limit
of loop erased random walk (and the interfaces in critical
percolation).

m Contour lines of the GFF converge to SLE (Schramm-Sheffield
2009).
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L The model

LGcncralizatinn to dimensiond > 2

General potential V, general boundary condition 1, general A
B V:R— R,V e C*R) with V(s) > As®> + B,A > 0,B € R for
large s.
m The finite volume Gibbs measure on R»

vy (¢) == exp —8 3" Vigi— o)) [ den.

i jEAUDA i€\
li—jl=1

where ¢; = 1); for i € OA.

m tiltu = (uy,...,uy) € R and tilted boundary condition
it =1i-u,i € OA.

m Finite volume surface tension (free energy) o (#): macroscopic
energy of a surface with tilt u € R?.

op(u) == log ZW

|A|
m Gradients Vo: Vo, = ¢y — ¢ for b = (i,)), i —j| =1



ent interfaces with and without disorder

lestions

Questions (for general potentials V):

m Existence and (strict) convexity of infinite volume (i.e., infinite
dimensional) surface tension

= li .
o(u) Alﬁréld op(u)

m Existence of shift-invariant infinite dimensional Gibbs measure

BT P
v:= lim v,

ATZd
m Uniqueness of shift-invariant Gibbs measure under additional
assumptions on the measure.

m Quantitative results for v: decay of covariances with respect to ¢,
central limit theorem (CLT) results, log-Sobolev inequalities,
large deviations (LDP) results.
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LRcsults: Strictly Convex Potentials

Known results for potentials V with

0<C1§V”§C2:

m Existence and strict convexity of the surface tension o for d > 1
and o € C'(RY).

m Gibbs measures v do not exist ford = 1, 2.

m We can consider the distribution of the V ¢-field under the Gibbs
measure v. We call this measure the V ¢-Gibbs measure .

m V¢-Gibbs measures p exist ford > 1.

m (Funaki-Spohn (CMP-2007)) For every u = (uy, ..., uy) € R?
there exists a unique shift-invariant ergodic V ¢- Gibbs
measure p with E,,[¢e, — ¢o] = u, forallk =1,....,d.

m CLT results, LDP results

Bolthausen, Brydges, Deuschel, Funaki, Giacomin, loffe, Naddaf,
Olla, Peres, Sheffield, Spencer, Spohn, Velenik, Yau, Zeitouni
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Known results

m Techniques: Strictly Convex Potentials



0<C <V'<Cy:

m Brascamp-Lieb Inequality (Brascamp-Lieb JFA
1976/Caffarelli-CMP 2000): for all x € A and foralli € A

var v (¢i) < var o (i),

ﬁ}\p is the Gaussian Free Field with potential V(s) = Cys°.

m Random Walk Representation (Deuschel-Giacomin-loffe 2000):
Representation of Covariance Matrix in terms of the Green
function of a particular random walk.

m GFF: Ifx,y € A

cov 0 (¢x, ¢y) =Gar(x,y).

m General 0 < C, < V"< G,
0 < cov V}\p ((bx, (by) < W7 |COV A (Vi(bm Vj(lsy)‘ <

__Cc
Jle—=y[[=>+°
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Lchhniqucs: Strictly Convex Potentials

m The dynamic: SDE satisfied by (¢ ) cz4

_oH
Ox

where W, := {W,(t), x € Z?} is a family of independent 1-dim
Brownian Motions.

do(r) = (6(0)dt + V2dW,(1), x € Z¢,
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Known results

m Results: Non-convex potentials



Why look at the case with non-convex potential V?

m Probabilistic motivation: Universality class

m Physics motivation: For lattice spring models a realistic potential
has to be non-convex to account for the phenomena of fracturing
of a crystal under stress.

m The Cauchy-Born rule: When a crystal is subjected to a small
linear displacement of its boundary, the atoms will follow this
displacement.

m Friesecke-Theil: for the 2-dimensional mass-spring model,
Cauchy-Born holds for a certain class of non-convex potentials.
Generalization to d-dimensional mass-spring model by Conti,
Dolzmann, Kirchheim and Miiller.
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s: Non-convex potentials

Results for non-convex potentials

m For the potential

sz .v2 kl 1/4
VO =pe T H(1-ple™@T, B= 1,k <<k, p = (k>
2

V(s)+

m Biskup-Kotecky (PTRF-2007): Existence of several V ¢-Gibbs
measures with expected tilt E,,[¢., — ¢o] = 0, but with different
variances.
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LRcsults: Non-convex potentials

m Cotar-Deuschel-Miiller (CMP-2009)/ Cotar-Deuschel
(AIHP-2012):
Let

V=Vy+g, C1 <Vj <G, g" <O.

If
Co<g'<0and +/Bllg"]|pr small(Ci,Cy)

uniqueness for shift-invariant V ¢-Gibbs measures y such that
E, [pe, — ¢0] = ux fork =1,2,...,d. Our results includes the
Biskup-Kotecky model, but for different range of choices of p, k;
and k».

m Adams-Kotecky-Miiller (preprint): Strict convexity of the
surface tension for very small tilt u and very large [3.
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with disorder

m Adding disorder (for example, making potentials random
variables) tends to destroy non-uniqueness.

m Consider for simplicity the disordered model
e=Vem) .= peh (”b)2+wh+(1—p)e_kZ(”b)z_“’b, (wp)p 1.1.d. Bernoulli.

Adaptation of the Aizenman-Wehr (CMP-1990) argument: gives
uniqueness of gradient Gibbs ind = 2
m Conjecture
m uniqueness for low enough d < d,;
® uniqueness/non-uniqueness phase transition for high enough
d>d. > 2.
m Techniques: Poincarre inequalities (Gloria/Otto), log-Sobolev
inequalities (Milman 2012).



Gradient interfaces with and without disorder

LOpen questions: non-convex potentials

m Log-Sobolev inequality for moderate/low temperature.
m Relaxation of the Brascamp-Lieb inequality.

m Example of potential where the surface tension is
non-strictly-convex.

m Conjecture: Surface tension (plus maybe some additional
assumption) = uniqueness of the shift-invariant Gibbs measure.

m Conjecture: Surface tension is in C?(R?) (both for strictly
convex and for non-convex potentials).
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LOpen questions:

THANK YOU!
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